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ABSTRACT1

We investigate dynamic pricing mechanisms in ridesourcing systems where the platform offers2

users multiple trip alternatives. The offered alternatives consist of the trip cost at delayed departure3

times, and we seek to determine the cost associated with each offered departure time. The objective4

of the pricing strategy is to maximize revenue while limiting the anticipated (future) demand profile5

to the available driver supply. Thus, the pricing strategy depends on a probabilistic characterization6

of predicted spatial and temporal demand patterns. In contrast to equilibrium-based methods, we7

use transient analysis to evaluate state-dependent pricing policies. Simulation results using Lyft8

rides illustrate the trade-off between maximizing revenue and limiting future demand peaks to the9

available supply. In addition, we show that as the user’s value of time increases, the ability of the10

pricing mechanism to minimize peaks in demand decreases.11

Keywords— network modeling, ridesourcing, pricing, demand management12
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1 INTRODUCTION1

In ridesourcing systems, the spatiotemporal mismatch between supply and demand results in op-2

erational inefficiencies and reduced quality of service. To limit the adverse impact of the supply-3

demand mismatch, platforms use control levers such as surge pricing, rewards for drivers, and4

reservations. During peak hours, surge pricing reduces the supply-demand mismatch by inhibiting5

passenger demand and attracting additional drivers to the surge location. However, surge pricing6

is controversial (12, 18). For example, drivers chasing the surge may reach the surge location af-7

ter demand subsides while leaving passengers in other locations without service. To address such8

surge pricing drawbacks, we investigate alternative pricing policies where passengers in areas with9

high demand are offered the option to delay their trip in exchange for a reduced cost.10

Recent research on pricing in ridesourcing systems focuses on evaluating the optimal trip11

cost under supply-demand equilibrium (1, 3, 5, 13, 16, 17), analyzing operational inefficiencies12

attributed to pricing (14, 18), and determining pricing strategies in transient (non-equilibrium)13

systems (9). The majority of existing studies analyze equilibrium conditions within time periods14

where driver supply, passenger demand, or trip costs are time invariant. However, since supply and15

demand patterns vary rapidly across time, ridesourcing systems may never attain equilibrium (6).16

The proposed pricing strategy focuses on the transient nature of ridesourcing dynamics (15). We17

predict a time-dependent probabilistic characterization of anticipated ride requests. Then, when18

users request a ride, we use the demand predictions to compute the cost of each offered departure19

time alternative.20

In particular, we consider that the platform dynamically provides users with multiple ride21

options, where each ride alternative consists of the trip cost at a delayed departure time. In turn,22

the passengers evaluate the utility of offered alternatives, and a multinomial logit model (MNL)23

is used to represent the probability that a passenger selects a specific alternative given its cost and24

associated delay. To determine future demand peaks, we use a probabilistic characterization of25

anticipated spatiotemporal demand patterns. Then, given a model for passenger choice and the26

anticipated demand, we evaluate the trip cost for each offered departure time using an optimization27

problem that maximizes platform revenue subject to constraints that stagger demand peaks. The28

pricing policy is state-dependent, and it is successively implemented as ride requests appear across29

time.30

The remainder of this article proceeds as follows: In Section 2 we review related work31

on pricing in ridesourcing systems. Section 3 presents the system model and the demand pro-32

cesses. Section 4 discusses departure time choice and its impact on anticipated demand. Section33

5 discusses the platform pricing policy. Section 6 demonstrates the impact of the proposed pricing34

strategy using Lyft rides in Manhattan. Section 7 concludes the article.35

2 RELATED WORK36

The majority of existing literature on pricing in ridesourcing systems investigates the role of surge37

pricing in alleviating or worsening operational inefficiencies. In general, these studies can be38

classified as either equilibrium-based evaluation of optimal prices or data-driven investigation of39

pricing inefficiencies.40
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Modeling ridesourcing systems as two-sided markets, researchers examined the impact1

of prices on the equilibrium between earning-sensitive drivers and price-sensitive passengers (1).2

In this approach, the prices, demand rate, and expected supply are fixed across different time-3

periods. Thus, the steady-state equilibrium is assumed to hold within each time period where the4

optimal price is determined. Alternative steady-state equilibrium methods include: the analysis5

of threshold-based dynamic pricing strategies, where the prices are determined by the number6

of idle drivers (3); spatial pricing across a network of regions (5, 17); and the use of pricing7

to alleviate system inefficiencies such as matching drivers to distant passengers at high demand8

levels (7, 14, 17).9

While equilibrium-based methods provide valuable strategic-level insights into supply and10

demand management (2), their value may be limited in operational analysis where the system11

parameters vary rapidly. In the context of driver rebalancing, it was shown that the time needed to12

converge to a steady-state equilibrium is on the order of 10 hours (6). Thus, since parameters and13

system characteristics vary over a much shorter time scale, transient (non-equilibrium) methods are14

needed for operational decisions. Recently, transient analysis of ridesourcing systems resulted in15

novel pricing strategies where the platform may incur losses over short time periods (9); the authors16

emphasize that such policies can not be evaluated using time-invariant steady-state methods.17

In addition to model-based analysis, pricing was further examined using data-driven ap-18

proaches. Notably, by analyzing the spatial variation in the mismatch between supply and demand19

(search frictions), it was shown that the future earnings of drivers starting at the same location differ20

significantly based on the assigned destination (18); consequently, there is a need for “destination21

invariant” pricing mechanisms where drivers starting their trip at the same location and the same22

time have equal expected future income (8). Other data-driven methods include the prediction of23

future surge pricing patterns to inform driver and rider decisions (4).24

In this research, we propose a pricing mechanism that induces users to travel during time25

periods when the predicted demand is low relative to the available supply. Instead of surge pricing,26

we offer users multiple departure time alternatives such that the price of each alternative depends27

on the future spatiotemporal demand patterns. In particular, given a multinomial logit model rep-28

resenting user choice, the prices are determined using an optimization problem that maximizes29

platform revenue subject to constraints that staggers future peaks in demand. As opposed to ex-30

isting equilibrium-based methods, we focus on state-dependent pricing using transient analysis of31

ridesourcing dynamics. In other words, instead of assuming steady-state conditions within succes-32

sive time periods, we implement real-time pricing that reacts to the current and predicted stochastic33

system state. Moreover, in contrast to origin-based pricing strategies, the proposed mechanism de-34

pends on both spatial and temporal components of the predicted demand.35

3 SYSTEM MODEL36

The ridesourcing platform aims to price trip alternatives for ride requests that initiate in a geo-37

graphic region r ∈ R (where R is the set of regions). As illustrated in Figure 1, we assume38

that the platform dynamically updates the offered alternatives at the beginning of regular time39

intervals U = {[ul, ul+1), [ul+1, ul+2), . . .}. For example, at time ul, the platform evaluates40

alternatives that will be offered to ride requests that will initiate during [ul, ul+1). Each alter-41
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native consists of a delayed departure time τ ∈ T = {τ1, τ2, . . . , τM} within the time horizon1

Tl+1 = [ul+1, ul+1 + T] and an associated trip cost. The offered departure times τ ∈ T do not2

have to coincide with end points of time intervals in U .3

Then, after the ride requests that initiate during [ul, ul+1) choose their trip departure time4

and cost, the platform generates a new set of alternatives (at time ul+1) for ride requests that will5

initiate during [ul+1, ul+2). Similar to ride requests that previously initiated, the ride requests6

that initiate during [ul+1, ul+2) will be offered a new set of departure times τ ∈ T ′ within the7

time horizon Tl+2 = [ul+2, ul+2 + T] and an associated trip cost for each departure time. The8

alternatives offered to ride requests that initiate during [ul, ul+1) are different from those offered9

to requests that initiate during [ul+1, ul+2), where this difference reflects variation of the system10

state between the time horizons Tl+1 and Tl+2.11

FIGURE 1 Time-dependent rolling horizon pricing mechanism

Since the same pricing procedure is repeatedly used for ride requests that initiate in any12

time interval [ul, ul+1) ∈ U , we restrict our analysis to requests that initiate during [u0, u1). For13

those rides, the offered departure time alternatives τ ∈ T = {τ1, τ2, . . . , τM} are within the time14

horizon T = [u1, u1 + T].15

In the subsequent analysis, we determine the trip cost of each departure time alternative16

τ ∈ T based on the anticipated system state during T. We start by describing the predicted17

demand in Section 3.1. Then, in Section 3.2 we analyze the impact of the demand patterns on18

the shortage in supply (change in idle drivers), and we define the load in a region as the process19

describing lost idle drivers. The resulting variation in idle drivers informs pricing strategies in20

Section 5.21

In more detail, the load process that informs pricing decisions is derived from the antic-22

ipated trips that start or end in region r within T. We categorize those trips into future or past23

depending on whether the ride request is received prior to u0 (past) or within T (future). Note that24

requests received prior to u0 may start their trip within T due to users delaying their ride. Section25

3.1 discusses past and future processes. Moreover, the users for which we are currently evaluating26

departure time alternatives (i.e., the users that will appear during [u0, u1)) are referred to as now27

users; Section 4 describes their choices and their impact on the load process.28
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FIGURE 2 System model characterizing time-dependent ridesourcing dynamics in a region (zone) r ∈ R.
St

f represents the cumulative number of trips that start in r by time t and correspond to ride requests received
in the future within T. Et

f represents the cumulative number of trips that end in r by time t and correspond
to ride requests received in the future within T. St

p represents the cumulative number of trips that start in r
by time t and correspond to past ride requests that are received prior to u0 (those rides start within T even
though the request is received prior to u0). Et

p represents the cumulative number of trips that end in r by
time t and correspond to past ride requests that are received prior to u0 (those rides end within T). The load
process is Lt

r = St
f + St

p − Et
f − Et

p

3.1 Prediction of Demand Processes1

We proceed by describing further the system state and the spatiotemporal demand during the time2

horizon T. The predicted demand processes dictate the supply-demand mismatch and the resulting3

shortage in idle drivers (high load). In Section 5, we use these predictions to compute the trip price4

at each offered departure time.5

As previously discussed, apart from now users, the demand during T has two components:6

(1) past demand that corresponds to ride requests received before u0, and (2) future demand that7

corresponds to ride requests that will be received during T. In the following demand character-8

ization, we assume future ride requests that appears in T do not delay their trip start time; this9

assumption ensures computational tractability and it is conservative in that it represents a worst10

case future demand scenario from the perspective of users that request a ride between [u0, u1).11

3.1.1 Future Demand12

First, we focus on future demand corresponding to requests received within T. For any pair of13

regions i, j ∈ R, we consider that future ride requests for users traveling between i and j will14

appear according to a Poisson process. In addition, we assume that the platform can estimate the15

rate of ride requests {λt
ij : t ∈ T}. For simplicity, we consider that the rate λij is fixed within16

the horizon T; however, the proposed mechanism can be easily generalized to cases with a time-17

dependent ride request rate. We also assume that the ride duration will be generally distributed18
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such that the service time distribution for rides between i, j is denoted by gij(·) and its cumulative1

density function is Gij(·).2

Thus, at time u0 and for any region r ∈ R, the platform can characterize two different3

predicted demand process {St
f , Et

f : t ∈ T} associated with future ride requests that will appear4

during T. These processes are stochastic since they are determined by ride requests that appear5

according to a Poisson process and ride durations that are generally distributed. Moreover, these6

processes depend on the spatial distribution of demand across the regions in R. The process St
f7

represents the cumulative number of future rides that will start in region r ∈ R by time t ∈ T.8

A ride starts when the driver is assigned to fulfill the trip (i.e., the driver is no longer idle). On9

the other hand, Et
f represents the cumulative number of rides that end in region r ∈ R by time10

t ∈ T (once a trip ends, region r would gain an idle driver). The processes {St
f , Et

f : t ∈ T} are11

illustrated in Figure 2.12

We assume that the processes {St
f , Et

f : t ∈ T} are unbounded. An equivalent assumption13

is that all ride requests can be served. Thus, we may observe that the predicted number of trips14

that start in r is greater than the number of available idle drivers throughout the time horizon; in15

practice, this would correspond to distant drivers from an external region being dispatched to serve16

requests that start in r. In other words, the demand processes corresponds to trips starting in r or17

trips ending in r (even if the driver had to be dispatched from an external region to serve requests18

in r).19

3.1.2 Previously Observed Demand20

In addition to the future demand, we assume that the platform can accurately determine the trip start21

time and duration for previously observed ride requests (i.e., the platform has full information on22

ride requests received prior to time u0). Thus, for each region r ∈ R, the platform can characterize23

deterministic processes {St
p, Et

p : t ∈ T} corresponding to the cumulative number of starts/ends24

that occur during T given that the request was received prior to time u0. St
p represents prior ride25

requests that start in region r by time t ∈ T. Similarly, Et
p represents prior ride requests that end in26

region r by time t ∈ T. We emphasize that {St
p, Et

p : t ∈ T} are restricted to starts/ends within T27

and that requests received prior to u0 may start their trip within T due to users delaying their ride28

3.2 Predicted Load Process29

Given these demand processes, we can define the load process Lt
r, where Lt

r corresponds to the
change in the number of idle drivers between u1 and t ∈ T. In particular, we can express Lt

r in
Equation 1 as the number of trips ending in r subtracted from the number of trips that start in r.
Observe that if the trips starting in region r is greater than the trips ending in region r the load
will increase; thus, large load values indicate that there is a net decrease in idle driver that results
from the spatiotemporal demand patterns. Note that Lt

r is independent of the users that appear
between [u0, u1). In other words, Lt

r is either caused by future demand or prior demand such that
it is independent of the users we seek to price. The load process Lt

r is illustrated in Figure 2.

Lt
r = St

f + St
p − Et

f − Et
p (1)
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In Section 5, we will use the expected value of Lt
r to compute the price of each offered

departure time alternative. In particular, the pricing strategy aims to disperse users that initiate be-
tween [u0, u1) away from periods with high expected load E

[
Lt

r
]
. Thus, we proceed by evaluating

E
[
Lt

r
]

given in Equation 2.

E
[
Lt

r
]
= E

[
St

f

]
+ St

p −E
[
Et

f

]
− Et

p (2)

3.2.1 Expected Number of Future Ride Requests that Start in Region r ∈ R1

We start by deriving E
[
St

f

]
, the expected number of future ride requests that start in r by time t.

Since future ride requests are received according to a Poisson process, the expected number of trips
starting in r by time t is given in Equation 3. Observe that E

[
St

f

]
is time-dependent indicating

lost idle drivers as time progresses.

E
[
St

f

]
= ∑

j∈R
λrj(t− u1) (3)

3.2.2 Expected Number of Future Ride Requests that End in Region r ∈ R2

Next, we derive E
[
Et

f

]
, the expected number of future ride requests that end in r by time t. Recall3

that we assume all requests could be served. In addition, for demand traveling from j ∈ R to r, we4

assume that future ride requests will be received according to a Poisson process with rate λjr and5

that the ride duration has a general distribution gjr(·) with the CDF being Gjr(·). In the following,6

we use a graphical approach to show that Et
f has a time-dependent Poisson distribution and E

[
Et

f

]
7

is its time-dependent mean (11).8

In Figure 3, let xj denote the trip start time (ride request initiation) of the jth future user9

that appears according to the Poisson process. Note that the trip may start in an external region10

(provided it starts during T as a future ride request). Moreover, let sj denote the corresponding11

service time for the jth future user. As shown in Figure 3, we observe that (xj, sj) is a random point12

in the two-dimensional plane [u1, u1 + T]× [0, ∞) that represents the trip start time and service13

duration. Thus, for any two-dimensional set S in [u1, u1 + T]× [0, ∞), the number of points in14

the set represents random sampling of the ride requests Poisson process; therefore, the number15

of points in the set S is Poisson distributed. We also know that disjoint two-dimensional sets16

correspond to independent sampling of a Poisson process; this implies that the number of points in17

each set is independent of other disjoint sets.18

Furthermore, if we isolate an infinitesimal two-dimensional square set with an area ds(dx),19

we can see that the mean number of points in that set is λjrdx
(

gjr(s)(ds)
)
. Thus, for any two-20

dimensional set S, the intensity of the two-dimensional Poisson distribution is λjrgjr(s). In other21

words, the distribution of points defined as (arrival time, service duration) is Poisson over the two-22

dimensional space, and the expected number of points for any set S is given by
∫

S λjrgjr(s)dsdx.23

As a result, to determine the expected number of arrivals from region j, we evaluate the24

integral
∫

S λjrgjr(s)dsdx over the shaded area illustrated in Figure 3. This shaded area represents25
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FIGURE 3 Service time vs. arrival time for future rides that are received after time u1. The dotted diagonal
lines represent the decrease in remaining service time as the user is being served. For any time t, the
number of users that have completed service is the number of points in the shaded area. For all such points,
the intersection of the associated dotted diagonal line with the x-axis is less than t. The shaded area also
corresponds to users that are served by time t in a transient M/GI/∞ queue that starts empty at time u1.

trips that started in j and have completed in region r prior to time t ∈ T. In particular, for each1

(arrival time, service time) pair associated with a specific user, the diagonal line represents the2

decrease in remaining service time as the user is being served. Note that for all users in the shaded3

area, the corresponding diagonal line intersects the x-axis prior to time t; this indicates that the trip4

terminates in region r before time t.5

In addition, observe that evaluating the integral
∫

S λjrgjr(s)dsdx over the shaded area is6

equivalent to calculating the expected number of served users in a transient M/GI/∞ queue that7

starts empty at u1, where the M/GI/∞ queue has an arrival rate λjr and a general service distri-8

bution gjr (the queue has infinite servers since all users can be served).9

Then, to compute E
[
Et

f

]
, the expected number of total trips that start in any region and end

in r by time t, we sum the integral
∫

S λjrgjr(s)dsdx across all regions j ∈ R (where the integral

is evaluated using the bounds of the shaded area). The resulting expression for E
[
Et

f

]
is given in

Equation 4. Similar to E
[
St

f

]
, we observe that E

[
Et

f

]
is time-dependent indicating the change in

load across time.

E
[
Et

f

]
= ∑

j∈R

∫ t

u1

∫ t−x

0
λjrgjr(s)dsdx = ∑

j∈R
λjr

∫ t−u1

0
Gjr(x)dx (4)

4 PASSENGER PRICE AND DEPARTURE TIME CHOICE10

In this section, we discuss the departure time choice of users that initiate now between u0 and u1.11

We also examine the impact of the choices on the future mismatch between supply and demand.12

In Section 5, we use the passenger choices and their impact on future supply-demand to determine13

the price of each offered departure time alternative.14
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4.1 The Multinomial Logit Model1

The probability pk(ck, τk) of a passenger choosing a particular departure time alternative τ ∈ T =2

{τ1, τ2, . . . , τM} is determined by random utility theory. In particular, we use a multinomial logit3

(MNL) model. The MNL model and the subsequent pricing optimization problem in Section 54

use the time-dependent surcharge ck instead of the full trip cost, where the full trip cost consists5

of the surcharge added to a base fare. However, since the base fare for each user is time-invariant6

(depending on factors such as the length of the trip, operational costs, type of service etc.), it does7

not factor into the departure time choice. In other words, the base fare would be the same for8

different departure time alternatives and the difference in cost is determined solely by the time-9

dependent surcharge. Moreover, while the base fare differs across users, the same surcharge is10

assigned for all users that choose a specific departure time alternative.11

In the MNL model, the utility of departing at time τ1 and paying a surcharge c1 is V1 = 0.
On the other hand, the utility of departing at time τk is Vk = βcak + βddk. The term dk =
τk − τ1 is the delay that results from departing at τk instead of τ1. Thus, the parameter βd is
negative and it corresponds to the sensitivity of a user to the delay. Similarly, the term ak =
c1 − ck is the difference in surcharge between the alternative at τ1 and the alternative at τk. In the
subsequent pricing optimization formulation, we restrict ak to be greater than zero such that a user
only delays their trip if the future surcharge ck is less than the current surcharge c1. In other words,
ak corresponds to user savings, and the parameter βc is positive indicating an increase in utility
with savings. We assume that the platform can estimate βc and βd. Then, the MNL probabilities
pk(ck, τk) are given in Equations 5 and 6. For brevity, we denote pk(ck, τk) as pk.

p1 =
1

1 + ∑τj∈T \{τ1} eβcaj+βddj
(5)

pk =
eβcak+βddk

1 + ∑τj∈T \{τ1} eβcaj+βddj
∀τ ∈ T \{τ1} (6)

4.2 Impact of Choices on the Load Process12

Given the probability pk that users arriving now between [u0, u1) select to depart at time τk, we
determine the impact of these choices on the load process. Similar to the analysis approach of
future rides in Section 3, we determine the number of trips that start/end in T given that the ride
request will be received during [u0, u1) and the departure time choice follows from the MNL
model. In particular, the additional load δt

r at time t ∈ T that is associated with users that appear
between [u0, u1) is shown in Equation 7. The term St

n represents the cumulative number of trips
that start by time t and correspond to users requesting service between [u0, u1). Similarly, the term
Et

n represents the cumulative number of trips that end by time t and correspond to users requesting
service between [u0, u1). The expected additional load E

[
δt

r
]

is given in Equation 8. In what
follows, we evaluate E

[
δt

r
]
.

δt
r = St

n − Et
n (7)

E
[
δt

r
]
= E

[
St

n
]
−E

[
Et

n
]

(8)
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Note that the departure time alternatives and their prices are generated at time u0. Thus, the1

platform needs to characterize the anticipated ride request rate and trip duration for requests that2

appear in [u0, u1). Similar to the future ride requests, the platform would estimate the arrival3

rate λrj for trips between regions r, j ∈ R. In addition, the ride duration also follows a general4

distribution grj(·) with CDF Grj(·).5

4.2.1 Expected Number Ride Requests that Start in Region r ∈ R for Users Requesting Service6

between [u0, u1)7

Then, we derive E
[
St

n
]
, the expected cumulative number of trips that start before time t in r

and are associated with requests that will be received during [u0, u1). The expression for E
[
St

n
]

is given in Equation 9; we arrive at this expression by calculating the total expected number of
requests received between [u0, u1) and multiplying by the probability that those requests choose
to depart prior to time t ∈ T (i.e., they choose a departure time τ ∈ T = {τ1, τ2, ..τM} that is less
than t).

E
[
St

n
]
=

[
∑
j∈R

λrj(u1 − u0)

]
∑

τk∈T :τk≤t
pk (9)

4.2.2 Expected Number Ride Requests that End in Region r ∈ R for Users Requesting Service8

between [u0, u1)9

Similarly, we derive E
[
Et

n
]
, the expected number of trips that end by time t in r and are associated

with requests that will be received during [u0, u1). The expression for E
[
Et

n
]

is given in Equation
10. To obtain Equation 10, we multiply the expected total number of users that would be received
between [u0, u1) and are destined to r by the probability that their trip ends before time t ∈ T; in
turn, the probability that the trip ends before time t is the product of the probability that the trip
starts prior to time t and the probability that the ride duration is less than the difference between t
and the start time.

E
[
Et

n
]
= λrr(u1 − u0) ∑

τk∈T :τk≤t
pkGrr(t− τk) (10)

5 PEAK-LOAD PRICING10

In this section, we describe the platform pricing strategy. In particular, we determine the trip11

cost associated with each departure time alternative τ ∈ T = {τ1, τ2, . . . , τM} offered to users12

that initiate between [u0, u1). The pricing mechanism aims to maximize platform revenue while13

reducing peaks in the load process.14

5.1 Platform Revenue Maximization15

The platform optimization problem is shown in formulation 11–16. The objective of the platform16

pricing strategy is to maximize revenue. In particular, the expected revenue per ride associated17
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with the pricing scheme, as given in the maximization objective, is the sum across alternatives of1

the surcharge multiplied by the choice probability (i.e., ∑τk∈T ck pk).2

The pricing strategy also aims to restrict the load process, where an increase in the load3

process indicates lost idle drivers (i.e., the cumulative number of trips starting in the region is4

greater than the cumulative trips ending in the region). Thus, by restricting peaks in the load5

process, the platform can limit the need for excess drivers that may require dispatching drivers from6

external regions to serve requests initiating within the pricing region. To that end, the component7

of the objective given by wz along with constraints 12 and 16 minimize the increase in load across8

departure time alternatives. The term w is a constant that weights the two components of the9

objective. Constraints 13 and 14 represent the MNL model that relates the surcharge to the choice10

probabilities. Constraint 15 guarantees that the savings are positive (i.e., that the future departure11

time alternatives have a lower surcharge). Thus, formulation 11–16 finds the optimal surcharges12

{ck ∈ R : τk ∈ T } that maximize platform revenue, minimize peaks in the load process, and13

reflect user choices.14

max
ck,pk :τk∈T ,

ak :τk∈T \{τ1},z

∑
τk∈T

ck pk − wz (11)

s.t.
(

E
[
Lτk+1

r

]
+ E

[
δ

τk+1
r

])
−
(
E
[
Lτk

r
]
+ E

[
δ

τk
r
])
≤ z ∀τk ∈ T \{τM} (12)

p1 =
1

1 + ∑τj∈T \{τ1} eβcaj+βddj
(13)

pk =
eβcak+βddk

1 + ∑τj∈T \{τ1} eβcaj+βddj
∀τ ∈ T \{τ1} (14)

ak ≥ 0 ∀τ ∈ T \{τ1} (15)
z ≥ 0 (16)

The formulation in 11–16 has a nonlinear objective function and nonlinear constraints.15

Specifically, the choice probabilities pk are a nonlinear function of the surcharge decision variables16

ck. In Section 5.2, we reformulate the optimization problem to arrive at a convex program. First,17

we reduce formulation 11–16 to an equivalent formulation where the decision variables are only18

pk and z. Then, we show that (in terms of pk and z) the objective is convex and the constraints19

form a convex set.20

5.2 Convex Revenue Maximization Formulation Given Passenger Choice21

To reformulate the problem into a convex program, we start by replacing the maximization in22

11–16 with the minimization in 17–22. As shown below, the revised objective is in terms of ak.23

Note that since the utility of alternatives with departure time τk ∈ T \{τ1} depends on the relative24

difference in cost between c1 and {ck : t ∈ T \{t1}}, we fix c1 as a constant. Thus, by solving for25

ak in the revised formulation, we seek to find the optimal surcharge {ck : τk ∈ T \{τ1}} relative26

to c1.27
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The revised formulation is as follows:

min
pk :τk∈T ,ak :τk∈T \{τ1},

zk :τk∈T \{τM}

∑
τk∈T \{τ1}

ak pk + wz (17)

s.t.
(

E
[
Lτk+1

r

]
+ E

[
δ

τk+1
r

])
−
(
E
[
Lτk

r
]
+ E

[
δ

τk
r
])
≤ z ∀τk ∈ T \{τM} (18)

p1 =
1

1 + ∑τj∈T \{τ1} eβcaj+βddj
(19)

pk =
eβcak+βddk

1 + ∑τj∈T \{τ1} eβcaj+βddj
∀τ ∈ T \{τ1} (20)

ak ≥ 0 ∀τ ∈ T \{τ1} (21)
z ≥ 0 (22)

Claim 1. Solving for an optimal solution to the maximization formulation 11–16 is equivalent to1

solving for the minimum of formulation 17–222

Proof. We show that the objectives of the two formulations are equivalent as follows:

max
ck,pk :τk∈T ,ak :τk∈T \{τ1},

zk :τk∈T \{τM}

∑
τk∈T

ck pk − wz (23)

⇔ max
ck,pk :τk∈T ,ak :τk∈T \{τ1},

zk :τk∈T \{τM}

∑
τk∈T \{τ1}

(c1 − ak) pk + c1p1 − wz (24)

⇔ max
ck,pk :τk∈T ,ak :τk∈T \{τ1},

zk :τk∈T \{τM}

− ∑
τk∈T \{τ1}

ak pk + c1

�
�
�
�>

1
∑

τk∈T
pk − wz (25)

⇔ min
pk :τk∈T ,ak :τk∈T \{τ1},

zk :τk∈T \{τM}

∑
τk∈T \{τ1}

ak pk + wz (26)

3

The revised formulation is still a non-convex optimization problem since pk is a nonlinear4

function of ak. Thus, in the subsequent reformulation 27–32, we reduce the optimization problem5

17–22 into a convex program in terms of pk and z. We start by rewriting the objective as a convex6

function. Then, we drop constraints 19–20 and add instead constraints that restrict the probabilities.7

Specifically, the MNL model in 19–20 ensures that the probabilities add up to 1 and are between8

(0, 1), we add those constraints upon dropping 19–20. Then, we replace 21 with an equivalent9

constraint that is linear in pk. Thus, in the space of pk and z, we obtain a convex program.10
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The revised formulation is as follows:

min
pk :τk∈T ,

zk :τk∈T \{τM}

1
βc

 ∑
τk∈T \{τ1}

pk log (pk)− βddk pk

− 1
βc

(1− p1) log (p1) + wz (27)

s.t.
(

E
[
Lτk+1

r

]
+ E

[
δ

τk+1
r

])
−
(
E
[
Lτk

r
]
+ E

[
δ

τk
r
])
≤ z ∀τk ∈ T \{τM} (28)

∑
τk∈T

pk = 1 (29)

0 ≤ pk ≤ 1 ∀τ ∈ T (30)

pk ≥ eβddk p1 ∀τ ∈ T \{τ1} (31)
z ≥ 0 (32)

Claim 2. Solving for an optimal solution to 17–22 is equivalent to solving for the minimum of1

formulation 27–322

Proof. First, we show that the two objectives are equivalent.
From Equation 19, we know that log(p1) = − log

(
1 + ∑τj∈T \{τ1} eβcaj+βddj

)
From Equation 20, we know that log(pk) = βcak + βddk − log

(
1 + ∑τj∈T \{τ1} eβcaj+βddj

)
Thus, log(pk) = βcak + βddk + log(p1)
Rearranging, we can write ak as follows:

ak =
1
βc

[log(pk)− log(p1)− βddk] (33)

Thus, ak pk =
1
βc
[pk log(pk)− pk log(p1)− βddk pk]

Then,

∑
τk∈T \{τ1}

ak pk =
1
βc

∑
τk∈T \{τ1}

[pk log(pk)− βddk pk]−
1
βc

log(p1)

��
��

�
��*

1− p1

∑
τk∈T \{τ1}

pk (34)

=
1
βc

∑
τk∈T \{τ1}

[pk log(pk)− βddk pk]−
1
βc

(1− p1) log(p1) (35)

where equation 34 follows from the requirement that the probabilities sum to one.
This implies that:

min
pk :τk∈T ,ak :τk∈T \{τ1},

zk :τk∈T \{τM}

∑
τk∈T \{τ1}

ak pk + wz

is equivalent to:

min
pk :τk∈T ,

zk :τk∈T \{τM}

1
βc

 ∑
τk∈T \{τ1}

pk log (pk)− βddk pk

− 1
βc

(1− p1) log (p1) + wz
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Furthermore, we show that constraint 21 can be expressed in terms of pk as follows:1

From Equation 33, since βc is positive (sensitivity to savings), we know that ak ≥ 0 if log(pk)−2

log(p1)− βddk ≥ 0.3

Thus, ak ≥ 0 if log( pk
p1
) ≥ log

(
eβddk

)
, and this implies that ak ≥ 0 if pk ≥ eβddk p14

Thus, since the constraints form a convex set in pk and z, we can show that the formulation5

27–32 is a convex program by verifying that the objective is a convex function. In particular, we6

show that the Hessian matrix associated with the objective function is positive semidefinite.7

Claim 3. The objective function8

F = 1
βc

[
∑τk∈T \{τ1} pk log (pk)− βddk pk

]
− 1

βc
(1− p1) log (p1) + wz9

is convex10

Proof. Observe that the objective is separable with respect to each decision variable {pk : τk ∈11

T }, z12

Then, we can easily determine the second derivative with respect to each variable and construct13

the corresponding diagonal Hessian matrix as follows:14

∂2F
∂p2

1
= 1

βc

[
1
p2

1
+ 1

p1

]
15

∂2F
∂p2

k
= 1

βc

(
1
pk

)
for all τk ∈ T16

∂2F
∂z2 = 017

Then the Hessian is an (M + 1)× (M + 1) diagonal matrix with the entries given by ∂2F
∂p2

1
, ∂2F

∂p2
k
, ∂2F

∂z2 .18

Recall that βc is positive since greater savings ak (i.e., lower ck) correspond to higher utility.19

In addition, for more than one departure time alternative, all the multinomial choice probabilities20

{pk : τk ∈ T } are between (0, 1).21

Thus, all the diagonal entries of the Hessian are non-negative; this implies that the Hessian is22

positive semidefinite.23

Since the Hessian is positive semidefinite, the objective is convex.24

Then, after solving the convex program 27–32 for the optimal {pk : τk ∈ T }, we can de-25

termine the associated optimal surcharge {ck : τk ∈ T \{τ1}} using Equation 36, where Equation26

36 follows from Equation 33.27

c?k = c1 −
1
βc

[log (p?k)− βddk − log (p?1)] ∀tk ∈ T \{t1} (36)
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FIGURE 4 Manhattan divided into four regions.

6 DEMONSTRATIONS & NETWORK ANALYSIS1

In this section, we present experimental results using data from Lyft operations in Manhattan,2

NYC. We use data from rides that occurred on Friday December 14th, 2018 (10) to estimate the3

model parameters. In particular, we consider trips that started between 16:00-19:00 (local time) in4

four regions that are shown in Figure 4, where all rides in a zone are offered the same departure5

time alternatives and corresponding time-dependent surcharges. We use a rolling time horizon T6

of 50 minutes, and the users are offered five departure times that are evenly spaced out within the7

horizon (i.e., there is a difference of 10 minutes between successive departure time offers). Note8

that we consider the pricing intervals [u0, u1) to be 10 minutes as well.9

Our primary findings suggest that as the users value of time increases, the effectiveness10

of the peak-load pricing strategy decreases. In addition, to control lost revenue, the platform can11

adjust the weight parameter w. In other words, as w increases, the platform loses more revenue in12

favor of shaving peaks in the load process.13

6.1 System model specification and rolling horizon implementation14

At any pricing interval and associated future time horizon T, we use ride request received prior15

to [u0, u1) to generate St
p and Et

p. Then, we use the Manhattan ride request data to determine16

the maximum likelihood estimator of the upcoming arrival rates λij between regions i, j ∈ R. In17

addition, we use the ride duration of Manhattan trips to estimate an empirical service distribution18

gij(·) with CDF Gij(·). The arrival rate and empirical service distribution are used to evaluate19

cumulative starts/ends St
f /Et

f associated with ride requests that will be received within the time20

horizon T.21

In each region, after we evaluate the load process and determine the optimal prices that22

will be offered to users, we consider that the Manhattan ride requests that subsequently appear in23

[u0, u1) to be ground truth observed data. Then, we probabilistically delay the associated start time24



Yahia and Boyles 15

of each ride based on the optimal MNL probabilities.1

This process is successively repeated by first updating St
p and Et

p to account for the choices2

of observed users [u0, u1). Then, we analyze the subsequent pricing interval [u1, u2) and gen-3

erate a new time horizon T that begins at u2. Note that we also discount trips that start/end at4

u1 from St
p/Et

p since we are now only concerned with cumulative starts/ends in the new horizon5

[u2, u2 + T].6

6.2 Value of time and lost revenue7

We analyze the impact of parameters βc and βd on the pricing strategy. For any specific departure8

time alternative τk, the change in utility with savings and delay is given as ∆Vk = βc∆ak + βd∆dk.9

Setting ∆Vk to zero, we can evaluate the trade-off between savings and delay. In particular, ∆Vk =10

0 implies that ∆ak = − (βd/βc)∆dk. Thus, in terms of the impact on utility, a unit increase11

in delay is equivalent to − (βd/βc) in additional savings (recall that βd is negative representing12

sensitivity to increased delay and βc is positive representing sensitivity to greater savings). In other13

words, we can consider the value of time to be VOT = − (βd/βc).14

Maximizing the platforms revenue is equivalent to minimizing the expected user savings15

(See Claim 1), where the expected user savings per region is ∑τk∈T \{τ1} ak pk. In particular, the16

expected user savings ∑τk∈T \{τ1} ak pk corresponds to the average lost revenue per ride based on17

the choices of the users (the choice probabilities are given by {pk : τk ∈ T \{τ1}}).18

In Figure 5, we evaluate ∑τk∈T \{τ1} ak pk for each region and then average the resulting
sum across regions. Thus, we compute the average lost revenue per ride given in Equation 37 at
every pricing time interval. Then, we plot the lost revenue against time for different VOT instances.

Lost Revenue =
1
|R| ∑

r∈R
∑

τk∈T \{τ1}
ak pk (37)

FIGURE 5 Lost revenue across time for different VOT values. The weight parameter w is set to one.
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We observe that as the VOT decreases the average lost revenue increases. This indicates1

that users with a lower value of VOT are more likely to delay their departure time. In turn, delayed2

departure times result in losses to the platform. In contrast, users with high VOT choose to depart3

at earlier times and forgo the savings. To further incentivize high VOT users to delay the trip, the4

platform may increase the weight w to place greater emphasis on minimizing peaks in the load5

process as opposed to maximizing revenue.6

In Figure 6, we illustrate the impact of the weight w on the lost revenue for a fixed VOT7

of $12 per hour. We show that as the weight parameter increases in the optimization objective, the8

losses to the platform increase as well; this indicates that the platform prioritizes restricting peaks9

in load the process over generating revenue. On the other hand, when the weight is low, the lost10

revenue is negligible; this indicates that the platform does not offer users low cost departure time11

alternatives to avoid a decrease in its revenue.12

FIGURE 6 Lost revenue across time for different weight values. VOT is $12 per hour.

7 CONCLUSION13

In this article, we propose a pricing mechanism that limits peaks in demand to the available supply.14

In contrast to surge pricing, we offer user the option to delay their trip departure time in exchange15

for a reduced trip cost. Thus, by pricing different departure time alternatives, we aim to disperse16

users away from peaks in the load process, where an increase in the load process represents lost17

idle drivers.18

As opposed to equilibrium-based methods that assume steady-state conditions, the pro-19

posed pricing mechanism focuses on the time-dependent system state and the associated transient20

probabilistic demand processes. In particular, we use a probabilistic characterization of future21

spatio-temporal demand to determine time periods with increased load. Then, we use the resulting22

load process to implement real-time pricing that reacts to the current and predicted system state.23

In addition to restricting the load process, the pricing strategy aims to maximize platform24

revenue while representing user choices using a multinomial logit model. Simulation results using25
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data from Lyft rides observed in Manhattan highlight the trade-off between maximizing revenue1

and restricting the load process. The results also exhibit the impact of user characteristics on2

the performance of the pricing strategy; specifically, we observe that as the users value of time3

increases, the effectiveness of the pricing strategy in terms of restricting the load process is dimin-4

ished.5
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