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Unmanned aerial vehicle path planning for traffic estimation and detection of non- 
recurrent congestion
Cesar N. Yahiaa, Shannon E. Scottb, Stephen D. Boylesa and Christian G. Claudela

aDepartment of Civil, Architectural and Environmental Engineering, the University of Texas at Austin, Austin, TX, US; bDepartment of Aerospace 
Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, US

ABSTRACT
Unmanned aerial vehicles (UAVs) provide a novel means of extracting road and traffic information from 
video data. In particular, by analyzing objects in a video frame, UAVs can detect traffic characteristics and 
road incidents. Leveraging the mobility and detection capabilities of UAVs, we investigate a navigation 
algorithm that seeks to maximize information on the road/traffic state under non-recurrent congestion. We 
propose an active exploration framework that (1) assimilates UAV observations with speed-density sensor 
data, (2) quantifies uncertainty on the road/traffic state, and (3) adaptively navigates the UAV to minimize 
this uncertainty. The navigation algorithm uses the A-optimal information measure (mean uncertainty), and 
it depends on covariance matrices generated by a dual state ensemble Kalman filter (EnKF). Our results 
indicate that targeted UAV observations aid in the detection of incidents under congested conditions where 
speed-density data are not informative.
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Introduction

Non-recurrent congestion is caused by capacity-reducing incidents 
such as accidents, adverse weather conditions, and work zones. This 
type of congestion is considered to be the primary source of travel 
time variability and accounts for up to 30% of congestion delay 
during peak periods (Anbaroglu, Heydecker, and Cheng 2014; 
Skabardonis, Varaiya, and Petty 2003; Sun et al. 2019). Thus, to 
minimize the impact of non-recurrent congestion, we need to 
rapidly detect incidents and allocate traffic management resources.

Recently, researchers demonstrated the use of unmanned aerial 
vehicles (UAVs) for traffic and incident monitoring (Barmpounakis 
et al. 2019; Jin et al. 2016; Krajewski et al. 2018; Lee et al. 2015; 
Stevens and Blackstock 2017). Krajewski et al. (2018) extract vehicle 
trajectories from UAV video data. Jin et al. (2016) use UAVs to map 
an incident site and determine the incident impact. Given the 
mobility and detection capabilities of UAVs, we develop an auto
matic path planning procedure that navigates UAVs toward infor
mative traffic or incident observations.

Traditional data-driven incident detection methods compare 
expected traffic conditions with sensor measurements. These algo
rithms detect that an incident occurred once collected data signifi
cantly deviates from expected conditions (Stephanedes and 
Chassiakos 1993). However, such outlier-based methods suffer 
from random traffic fluctuations that cause false alarms. In addi
tion, using data-driven methods, it is difficult to distinguish inci
dent data from similar traffic patterns that occur due to congestion 
shock waves (Cheu and Ritchie 1995; Hawas and Ahmed 2017; 
Stephanedes and Chassiakos 1993).

To improve incident detection, researchers explored estimation 
methods that use a macroscopic traffic model to jointly estimate 
traffic states and the incident severity. In particular, incident infor
mation can be integrated into model-based traffic estimation meth
ods by modifying certain parameters (e.g. free flow speed and/or 
critical density) that reflect the incident impact (Dabiri and Kulcsár 

2015; Wang, Work, and Sowers 2016b; Wang and Papageorgiou 
2005). Alternatively, recent model-based estimation techniques rely 
on comparing the predictions of multiple traffic models with 
observed data; then, the estimation procedure seeks to identify the 
most likely model among a set of possible parameter configurations 
that represent different levels of incident severity (Wang, Fan, and 
Work 2016a; Wang and Work 2014; Wang, Work, and Sowers 
2016b; Willsky et al. 1980). These methods are promising but they 
are still limited in certain situations with poor observability where it 
is difficult to determine if speed-density measurements correspond 
to congestion under normal operating conditions or an actual 
reduction in road capacity.

The objective of this article is to develop an estimation-planning 
framework that navigates a UAV toward informative observations 
of the underlying road/traffic conditions. The proposed framework 
(1) assimilates UAV density and capacity drop observations with 
local speed-density sensor measurements, (2) quantifies the uncer
tainty on road and traffic states, and (3) adaptively navigates the 
UAV to minimize the uncertainty on state estimates. In particular, 
we develop an online one-step lookahead path planning algorithm 
that evaluates candidate UAV trajectories based on anticipated 
reduction of the mean uncertainty (i.e., A-optimal path planning). 
The uncertainty is represented by time-varying covariance matrices 
that are generated by a dual ensemble Kalman filter (EnKF); these 
covariance matrices correspond to traffic densities and incident 
parameters (free flow speed and critical density). A key feature of 
the proposed estimation procedure is that we maintain a monotonic 
relationship between incident state parameters and observations. 
The proposed framework is shown in Figure 1.

The remainder of this article is organized as follows. Section 2 
discusses the literature relevant to incident detection and traffic 
state estimation. In Section 3, we present the dual ensemble 
Kalman filter (EnKF) algorithm for simultaneous estimation of 
traffic densities and parameters. In Section 4, we discuss the 
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difficulty in estimating capacity drops under congested conditions 
from traditional speed-density measurements, we quantify the 
uncertainty on the dual EnKF estimates, and we develop the frame
work shown in Figure 1 to navigate a UAV toward uncertainty 
minimizing observations. In Section 5, we present results obtained 
for a simulated freeway segment that show the advantage of gen
erating targeted observations in congested conditions. Section 6 
concludes the article.

Literature review

The majority of incident detection methods rely on analyzing 
abnormalities in observed traffic data (Stephanedes and 
Chassiakos 1993). These data-driven methods include threshold- 
based algorithms that have been applied since the 1970s. In parti
cular, threshold-based algorithms compare patterns from detector 
observations to threshold values in a decision tree (Payne, 
Helfenbein, and Knobel 1976). Alternative data-driven approaches 
such as time series analysis, artificial neural networks, and wavelet- 
based techniques were subsequently used to detect incidents (Cheu 
and Ritchie 1995; Dia and Rose 1997; Stephanedes and Chassiakos 
1993; Stephanedes and Liu 1995; Teng and Qi 2003). Parkany and 
Xie (2005) provide a comprehensive review on data-driven incident 
detection algorithms. The primary drawbacks of data-driven meth
ods pertain to (1) fitting or specifying a large number of parameters, 
(2) difficulty in distinguishing incident traffic patterns from similar 
patterns that result from congestion under normal operating con
ditions, (3) susceptibility to random fluctuations in traffic data, and 
(4) difficulty in predicting the traffic state beyond locations where 
data is collected (Parkany and Xie 2005; Stephanedes and 
Chassiakos 1993; Wang, Fan, and Work 2016a).

To detect incidents and simultaneously predict their impact on 
traffic conditions, researchers explored model-based estimation 
methods where model parameters reflect the incident severity. 
Incorporating the incident state in traffic estimation improves 
both incident detection capabilities and the resulting traffic state 
estimates (Wang, Work, and Sowers 2016b) Wang and 
Papageorgiou (2005) proposed an extended Kalman filter that 
uses a macroscopic traffic flow model to estimate traffic densities 

as well as the free flow speed and critical density. They implemented 
joint state estimation where parameters and boundary variables are 
added to the state space, and they considered that flow and mean 
speed measurements could be obtained. Recent articles on simulta
neous estimation of traffic states and fundamental diagram para
meters include the use of count and trajectory data in a single 
optimization framework (Sun, Jin, and Ritchie 2017).

Alternative model-based estimation techniques include methods 
that aim to identify the most likely traffic model among a set of 
models; in these methods, each model represents a different con
figuration of parameters (Wang, Fan, and Work 2016a,b). In the 
case of incident detection, each model parametrization reflects 
a certain level of incident severity. The first article to consider this 
approach used an extended Kalman filter to select the most likely 
model (Willsky et al. 1980). This framework was then enhanced to 
allow for dependencies between the most likely models chosen 
across time (Wang, Work, and Sowers 2016b). In particular, given 
pre-specified incident evolution dynamics, an interactive multiple 
model ensemble Kalman filter and a multiple model particle filter 
were used to simultaneously estimate traffic states and the incident 
severity (Wang, Fan, and Work 2016a; Wang and Work 2014; 
Wang, Work, and Sowers 2016b).

In model-based estimation methods that use a macroscopic traffic 
model, for typical sensor data such as speed-density measurements, 
it is difficult to distinguish between traffic patterns that result from 
incidents and similar patterns observed under incident-free conges
tion. In particular, whether there is an incident or not, we will 
observe low speed and high-density measurements under congested 
conditions. This poor observability is further discussed in Section 4.

Thus, we propose an estimation-planning framework that navi
gates a UAV toward informative traffic/incident state observations. 
First, we present a dual state EnKF estimation procedure that 
generates Gaussian distributions reflecting the uncertainty on traf
fic/parameter state estimates. Then, we navigate the UAV toward 
observations that minimize the mean uncertainty; effectively, the 
UAV is navigated toward congested incident locations where it is 
difficult to infer the incident state from speed-density data. We note 
that the proposed path planning procedure can be used to navigate 
a mobile sensor toward uncertainty minimizing observations 

Figure 1. Estimation and routing framework to navigate a UAV toward informative traffic state and incident observations.
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without updating parameters that represent incident severity. 
Similarly, the proposed estimation procedure (that maintains 
a monotonic relationship between measurements and incident 
parameters) can be used without the additional uncertainty- 
minimizing UAV observations.

Traffic state and parameter estimation under non- 
recurrent congestion

In this section, we implement a dual state ensemble Kalman filter. 
The dual EnKF will result in separate traffic and parameter state 
covariance matrices. These matrices represent the uncertainty on 
the traffic/parameter state estimates. In Section 4, the uncertainty 
will be quantified along candidate UAV paths to determine the 
UAV trajectory that maximizes traffic/incident information.

A key feature of the proposed estimation procedure is that it 
maintains a monotonic relationship between observations and 
parameter state variables; advantages of this monotonicity are 
further discussed in Section 3.3. In addition, since the measure
ments are not linearly related to the parameters of interest, we use 
model predicted measurements that represent anticipated observa
tions for the given parameter values.

The non-recurrent congestion incidents we consider do not 
significantly impact the jam density. This type of incidents could 
represent adverse weather conditions, roadside accidents, or work 
zones. Compared to existing methods that consider lane-blocking 
incidents or a fixed incident free flow speed (Lu and Elefteri- adou, 
2013; Wang, Fan, and Work 2016a; Wang and Work 2014; Wang, 
Work, and Sowers 2016b), we aim to analyze the variation in free 
flow speed and critical density.

The dual state ensemble Kalman filter

The dual EnKF is composed of two separate ensemble Kalman 
filters for traffic densities and parameters (free flow speed and 
critical density) working in parallel. Each EnKF is a stochastic filter 
that propagates ensemble members (samples) representing the state 
statistics (Blandin et al. 2012; Evensen 2003, 2009). The filters 
interact by recursively feeding best estimates into each other at 
every update step. In particular, the updated parameters are used 
to adjust the forward model of the traffic densities EnKF; similarly, 
the resulting traffic state estimates inform subsequent parameter 
updates. In each filter, the ensemble mean is the best estimate on the 
true traffic/parameter state and the ensemble covariance corre
sponds to the error on the ensemble mean (Evensen 2003, 2009).

As a model-based estimation technique, the dual EnKF is limited 
by the accuracy of the traffic model in reflecting driver behavior and 
traffic dynamics. We use a triangular flow-density relationship that 
disregards driver heterogeneity and car-following behavior. This 
simple representation of traffic dynamics enables efficient predic
tion of traffic densities in the EnKF procedure.

The traffic state is represented by densities ρðx; tÞ propagated 
forward using the cell transmission model. The incident severity is 
represented by the free flow speed uf and critical density ρcr para
meters at incident prone locations. The uf parameters are propa
gated forward using a random walk. On the other hand, the ρcr 
parameters are updated based on corresponding uf updates; this 
parameter update procedure aims to maintain a monotonic rela
tionship between parameters (uf and ρcr) and speed-density obser
vations. Equivalently, we can propagate ρcr using a random walk 
and update uf based on the corresponding ρcr updates. We consider 
that the traffic state is directly observed using loop detector density 
measurements. We also consider that, for the given best estimate on 

traffic densities, the incident parameters are observed using less 
frequent speed measurements.

While alternative optimization methods could be used to specify 
the estimation objectives (Canepa and Claudel 2017), the dual 
EnKF is a variance-minimizing scheme that enables efficient updat
ing of Gaussian covariance matrices. In addition, compared to 
methods that estimate the most likely traffic model (Wang, Fan, 
and Work 2016a,b; Willsky et al. 1980), the dual EnKF uses con
tinuous variables for incident parameters; thus, the dual EnKF 
estimates are not limited to a predefined set of incident severity 
levels.

Importantly, a dual estimation procedure enables us to maintain 
separate covariance matrices for traffic states and parameter esti
mates. Maintaining separate covariance matrices is a critical com
ponent of the proposed UAV navigation algorithm (Section 4); 
precisely, the UAV navigation algorithm identifies targeted uncer
tainty minimizing measurements based on the relative uncertainty 
between traffic and parameter state estimates.

Traffic state EnKF

In the traffic densities EnKF, the Lighthill-Whitham-Richards par
tial differential equation (LWR PDE) is used to represent traffic 
dynamics. This PDE is shown in Equation 1 where ρðx; tÞ and 
vðρðx; tÞÞ are the density and velocity at a particular point in 
space and time, respectively. Following Wang and Work (2014), 
we use a speed-density relationship that corresponds to a triangular 
flow-density diagram (Equation 2). In this equation, ρcr is the 
critical density, ρj is the jam density, and uf is the free flow speed. 
For implementation, the LWR PDE is discretized using a Godunov 
scheme to obtain the cell transmission model (CTM) (Daganzo 
1994, 1995; Godunov 1959). Thus, as the forward model in the 
traffic densities EnKF, the CTM will be used to propagate traffic 
flow through the network (i.e., the CTM will be used to track 
densities ρðx; tÞ across time). 

@ρðx; tÞ
@t

þ
@ðρðx; tÞvðρðx; tÞÞÞ

@x
¼ 0 (1) 

vðρðx; tÞÞ ¼
uf forρðx; tÞ � ρcr

uf ρcrðρj� ρðx;tÞÞ
ρðx;tÞðρj� ρcrÞ

otherwise

 

(2) 

The resulting traffic densities EnKF is shown in Equations 3–10 
(Evensen 2003). The Mρ � 1 vector ρt

i represents densities asso
ciated with ensemble member i at time t, where Mρ is the number of 
density parameters to be estimated across the network. The forward 
model CTMΔt propagates traffic densities from time t until time t þ
Δt using the CTM. The model errors w is a vector of Gaussian white 
noise such that w,Nð0;QρÞ. For N ensemble members, A is an 
Mρ � N matrix that stores the ensemble members in its columns, 
1N is an N � N scale matrix such that every element is 1=N, and �A is 
an Mρ � N matrix where every column is the ensemble mean.

In terms of observations, dj is an Mρ � 1 vector representing 
a particular perturbation of the vector of density measurements dρ 

using Gaussian white noise observation errors ερ,Nð0;RρÞ. The 
model and observation errors are independent of each other. The 
Mρ � N matrix D stores the perturbed observations. The observa
tion errors are stored in the Mρ � N matrix Υ . The matrix H is an 
observation matrix; in the traffic densities EnKF, H is the Mρ �Mρ 
identity matrix since state variables (densities) are directly 
measured.

After every update stage, the updated ensemble members ρtþΔt
i 

are stored in the columns of the Mρ � N matrix Aa. The updated 
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ensemble covariance matrix is P. Thus, P represents the uncertainty 
on the traffic density estimates. 

ρtþΔtjt
i ¼ CTMΔtðρt

iÞ þ w "i 2 f1; ::;Ng (3) 

A ¼ ρtþΔtjt
1 ; ρtþΔtjt

2 ; . . . ; ρtþΔtjt
N

h i
(4) 

�A ¼ A1N (5) 

dj ¼ dρ þ ερ
j "j 2 f1; ::;Ng (6) 

D ¼ d1; d2; . . . ; dN½ � (7) 

Υ ¼ ερ
1; ε

ρ
2; . . . ; ερ

N
� �

(8) 

Aa ¼ Aþ ðA � �AÞðA � �AÞTHTðHðA � �AÞðA � �AÞTHT 

þΥΥTÞ
� 1
ðD � HAÞ (9) 

P ¼
1

N � 1
ðAa � Aa1NÞðAa � Aa1NÞ

T (10) 

Parameters EnKF: free flow speed and critical density updates

In addition to the traffic density estimates, we present parameters 
EnKF for propagating and updating parameter estimates once 
speed measurements are obtained. Given the best estimate on traffic 
densities, we can relate the observed speed measurements vðρðx; tÞÞ
to uf and ρcr through Equation 2. Clearly, the observation function 
relating measurements to parameters is nonlinear; this nonlinearity 
implies that we cannot construct an observation matrix H similar to 
the matrix that appears in Equation 9. Thus, we discuss an approach 
for incorporating the non-linear parameter–measurement relation
ship using model diagnostic variables; in particular, the diagnostic 
variables represent model predicted measurements. We also present 
a parameter update procedure where either ρcr or uf is updated by 
the EnKF, and the other parameter is subsequently updated using 
a predefined relationship between ρcr and uf . This parameter update 
procedure preserves a monotonic relationship between parameter 
updates and observations.

To incorporate the non-linear parameter-measurements obser
vation function, we introduce the matrix Â (Evensen 2009). The 
columns of Â are predicted velocities vðρðx; tÞÞ for the current ρcr 
and uf values (Equation 11); these predicted velocities are com
puted by plugging in ρcr and uf in Equation 2. For ensemble 
members i at time t, we use Mðut

f ;i; ρ
t
cr;iÞ to denote this non-linear 

function relating the parameters to the predicted velocity. Thus, 
Mðut

f ;i; ρ
t
cr;iÞ is a vector of model predicted velocities at incident 

prone locations, where the predicted velocities correspond to the 
parameters (ρt

cr;i and ut
f ;i) in ensemble member i at time t. Note that 

ut
f ;i is an Muf � 1 vector of free flow speeds uf at incident prone 

locations (Muf is the number of uf parameters to be estimated). 
Similarly, ρt

cr;i is a vector of critical densities at incident prone 
locations. 

Â ¼ Mðut
f ;1; ρ

t
cr;1Þ;Mðu

t
f ;2; ρ

t
cr;2Þ; . . . ;Mðut

f ;N ; ρ
t
cr;NÞ

h i
(11) 

Let pt
i

� �T
¼ ut

f ;i

� �T
; ρt

cr;i

� �T
� �

be the vector of all parameters that  

are associated with ensemble member i at time t. In addition, let F 
be a model that propagates the parameters forward in time (F 
includes model errors). Then, the resulting EnKF equations would 
be as shown in Equations 12–19. The primary difference between 
the parameter EnKF equations and the traffic densities EnKF is the 
use of Â in the update Equation 18. In addition, dj in Equation 15 is 
an Mv � 1 vector representing a particular perturbation of the speed 
measurements dv using Gaussian observation errors εv,Nð0;RvÞ

(the dimension of the measurement vector Mv may be different 
from the number of estimated parameters). 

ptþΔtjt
i ¼ Fðpt

iÞ "i 2 f1; ::;Ng (12) 

A ¼ ptþΔtjt
1 ; ptþΔtjt

2 ; . . . ; ptþΔtjt
N

h i
(13) 

�A ¼ A1N (14) 

dj ¼ dv þ εv
j "j 2 f1; ::;Ng (15) 

D ¼ d1; d2; . . . ; dN½ � (16) 

Υ ¼ εv
1; ε

v
2; . . . ; εv

N
� �

(17) 

Aa ¼ Aþ ðA � �AÞðÂ � Â1NÞ
T
ððÂ � Â1NÞðÂ � Â1NÞ

T 

þΥΥTÞ
� 1
ðD � ÂÞ (18) 

P ¼
1

N � 1
ðAa � Aa1NÞðAa � Aa1NÞ

T (19) 

The modified update procedure in Equation 18 works well when the 
Mð�Þ functions are monotonic and not highly nonlinear (Evensen 
2009). If Mð�Þ is non-monotonic, then it would not be clear if the 
EnKF should increase or decrease the parameter values in response 
to observed measurements. In more detail, Figure 2 illustrates the 
speed-density relationships (dotted lines) at a particular incident 
location. Each speed-density relationship corresponds to and ρcr 
parameters of a specific ensemble member that is stored in A. To 
facilitate illustration, we show parameter values representing only 
two ensemble members at one incident prone location. The solid 
line in Figure 2 shows the parameters ensemble mean at the inci
dent location (ρcr and uf elements of a column in �A).

Consider that the density value assimilated through the traffic 
densities EnKF is 80veh/km (as marked using an upward pointing 
arrow). At this density value, we can determine the model predicted 
speed associated with each ensemble speed-density relationship; 
these model predicted speeds will be stored in Â (the model pre
dicted speed for ensemble member 1 is 35km/hr and the corre
sponding value for ensemble member 2 is 140km/hr). The mean of 
the model predicted speeds across ensemble members is shown 
using a dashed line (i.e., the incident location component of 
a column in Â1N).

Observe that in Figure 2 the relationship between the parameter 
state variables and the model predicted speeds is non-monotonic. In 
particular, an increase in uf above its ensemble mean value may 
result in low model predicted speed (ensemble member 1) or high 
model predicted speed (ensemble member 2). This non-monotonic 
relationship impacts the ðA � �AÞðÂ � Â1NÞ

Tterm in Equation 18, 
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where ðA � �AÞðÂ � Â1NÞ
T captures the covariance between para

meter states and model predicted speeds. Specifically, it would not 
be clear if larger values of uf (relative to the uf ensemble mean) are 
associated with higher or lower model predicted speeds (relative to 
the model predicted speed ensemble mean). This implies that for 
a certain deviation of the model predicted speed from the observed 
measurements (D � Â), it would not be clear whether the EnKF 
should increase or decrease the uf state variables so that the model 
predicted speeds would match the observed measurements.

Alternatively, in Figure 3, we enforce a relationship between uf 
and ρcr across ensemble members. As shown, at the density value 
assimilated through the traffic densities EnKF (80veh/km), the 
model predicted speed is a non-decreasing function of uf . This 
implies that in terms of the covariance ðA � �AÞðÂ � Â1NÞ

T, greater 
values of uf will be associated with greater values of model pre
dicted speed. Similarly, we observe that the model predicted speed 
is a monotonic function of ρcr. In particular, the model predicted 

speed is a non-increasing function of ρcr. Thus, if the observed 
measurement is greater than the model predicted speed, the EnKF 
tends to increase uf and decrease ρcr to match the measurement. On 
the other hand, if the observed measurement is less than the model 
predicted speed, the EnKF tends to decrease uf and increase ρcr to 
match the measurement. However, for each ensemble member, uf 
is coupled with ρcr through a specific relationship; this coupling 
between uf and ρcr results in a monotonic relationship between 
parameters and observations.

In more detail, to achieve the monotonic relationship between 
parameters and observations, we maintain a fixed backward wave 
speed w0 across ensembles at each incident prone location (as 
shown in Figure 3). Let ρ0

cr and u0
f be the parameters associated 

with the backward wave speed w0; these parameters and the corre
sponding backward wave speed w0 may be calibrated during inci
dent-free conditions from prior data. In each ensemble, for 
a specific incident prone location, the critical density ρt

cr at any 

Figure 2. Non-monotonic relationship between parameters and model predicted measurements. Dotted lines: speed-density relationship at a particular incident location 
for different ensemble members of the parameters EnKF (to facilitate illustration, we only exhibit two ensemble members). Solid line: speed-density relationship associated 
with the ensemble mean. Dashed line: ensemble mean of the model predicted speed measurements at the incident location.

Figure 3. Monotonic relationship between parameters and model predicted measurements. Dotted lines: speed-density relationship at a particular incident location for 
different ensemble members of the parameters EnKF (to facilitate illustration, we only exhibit three ensemble members). Solid line: speed-density relationship associated 
with the ensemble mean. Dashed line: ensemble mean of the model predicted speed measurements at the incident location.
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time t should be related to the free flow speed ut
f via Equation 20. 

This equation can be further simplified into Equation 22. 

ρt
cr ¼

ρ0
cru

0
f ρj

ut
f ðρj � ρ0

crÞ þ ρ0
cru0

f
(20) 

w0 ¼
ρ0

cru
0
f

ρj � ρ0
cr

(21) 

ρt
cr ¼

ρjw
0

ut
f þ w0 (22) 

Thus, using the relationship between ut
f and ρt

cr in Equation 22, we 
can express one parameter in terms of the other and substitute in 
Equation 2. Subsequently, we obtain a monotonic non-linear obser
vation function that relates the model predicted speed to either of 
the parameters. In particular, if we express ρt

cr in terms of ut
f and 

substitute the resulting expression into Equation 2, we get 
Equation 23. In turn, Equation 23 can be simplified into an Mð�Þ
function that only depends on ut

f as shown in Equation 24. Notice 
that Equation 24 monotonically relates predicted speeds vðρðx; tÞÞ
to ut

f such that an increase in ut
f is associated with non-decreasing 

model predicted speed. 

vðρðx; tÞÞ ¼

ut
f for ρðx; tÞ � ρjw

0

ut
fþw0

ut
f

ρjw0

ut
f
þw0

� �

ðρj� ρðx;tÞÞ

ρðx;tÞ ρj�
ρjw0

ut
f
þw0

� �� � otherwise

0

B
B
B
B
B
B
@

(23) 

Mðut
f Þ ¼

ut
f for ρðx; tÞ � ρjw0

ut
fþw0

w0 ρj� ρðx;tÞ
ρðx;tÞ

� �
otherwise

0

B
@ (24) 

Equivalently, we can choose to express ut
f in terms of ρt

cr 
(Equation 25) and substitute the resulting expression into 
Equation 2; this leads to Equation 26 that can be simplified into 
an Mð�Þ function that only depends on ρt

cr as shown in Equation 27. 
This function also monotonically relates ρt

cr to the model predicted 
speed such that an increase in ρt

cr is associated with non-increasing 
model predicted speed. 

ut
f ¼

w0 ρj � ρt
cr

� �

ρt
cr

(25) 

vðρðx; tÞÞ ¼

w0 ρj� ρt
crð Þ

ρt
cr

for ρðx; tÞ � ρt
cr

w0 ρj � ρt
crð Þ

ρt
cr

� �
ρt

crðρj� ρðx;tÞÞ

ρðx;tÞðρj � ρt
crÞ

otherwise

0

B
B
@ (26) 

Mðρt
crÞ ¼

w0 ρj� ρt
crð Þ

ρt
cr

for ρðx; tÞ � ρt
cr

w0 ρj � ρðx;tÞ
ρðx;tÞ

� �
otherwise

0

@ (27) 

In this article, we use ut
f in the estimation procedure and update ρt

cr 
based on corresponding ut

f updates. In other words, we use 

Equation 24 to generate the model predicted speed for ut
f 

ensembles. Then, when ut
f is updated, we determine ρt

cr updates 
by substituting the ensemble mean (best ut

f estimate) in 
Equation 22.

Following Tampère and Immers (2007); Wang and 
Papageorgiou (2005), we use a random walk to specify the forward 
model F as shown in Equation 28, where z,Nð0;Quf Þ is Gaussian 
white noise. Then, we define the Muf � N matrix A as in 
Equation 29 and the matrix Â as in Equation 30 (i.e., Â uses 
Equation 24). Then, Equations 28–36 represent the EnKF for pro
pagating and updating free flow speed estimates when speed mea
surements are obtained. 

utþΔtjt
f ;i ¼ ut

f ;i þ z (28) 

A ¼ utþΔtjt
f ;1 ; utþΔtjt

f ;2 ; . . . ;utþΔtjt
f ;N

h i
(29) 

Â ¼ Mðut
f ;1Þ;Mðu

t
f ;2Þ; . . . ;Mðut

f ;NÞ
h i

(30) 

�A ¼ A1N (31) 

dj ¼ dv þ εv
j "j 2 f1; ::;Ng (32) 

D ¼ d1; d2; . . . ; dN½ � (33) 

Υ ¼ εv
1; ε

v
2; . . . ; εv

N
� �

(34) 

Aa ¼ A
þ ðA � �AÞðÂ
� Â1NÞ

T
ððÂ � Â1NÞðÂ � Â1NÞ

T
þ ΥΥTÞ

� 1
ðD � ÂÞ (35) 

P ¼
1

N � 1
ðAa � Aa1NÞðAa � Aa1NÞ

T (36) 

The dual state EnKF algorithm
To summarize, we propagate separate filters for the traffic densities 
and incident parameters, with the filters recursively feeding best 
estimates into each other. Given traffic densities (best estimates) 
assimilated through the traffic densities EnKF, we update the para
meters when speed measurements are observed. To maintain 
a monotonic relationship between parameters and observed speed 
measurements, we choose to estimate uf via Equations 28–36. Then, 
we update ρcr at each incident prone location based on corresponding 
uf updates using Equation 22. After the parameters are updated, we 
modify the traffic state EnKF forward model CTMΔt using the new 
parameter values. Then, we update traffic densities through 
Equations 3–10 until speed measurements are observed again. 
Thus, the dual filters recursively feed best state estimates into each 
other. This dual EnKF estimation procedure is shown in Algorithm 1.

Algorithm1 Dual EnKF for traffic densities and free flow speed 
parameters at incident prone locations

Initialization:
(1) Define CTM∆t based on incident-free calibrated parameters
(2) Create initial ensembles for densities across cells
(3) Create initial ensembles for free flow speeds at incident 

prone locations
Dual EnKF:
for time in estimation horizon do
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(4) Propagate and update density ensembles using 
Equations 3–10

if get speed observation then
(5) Propagate and update free flow speeds ensembles using 

Equations 28–36
(6) Update critical density estimates using Equation 22 and the 

free flow speed best estimates
(7)Adjust parameters in CTM∆t 

basedonupdatedfreeflowspeedandcriticaldensityestimates

UAV navigation for uncertainty minimization and traffic 
state-parameter estimation

The proposed dual estimation procedure (Section 3) can efficiently 
estimate traffic densities and parameters in situations where the 
densities vary significantly during the estimation time horizon. We 
can also effectively infer the occurrence of incidents under uncon
gested conditions. In more detail, if low-density measurements are 
accompanied with low-speed measurements, then this indicates 
that an incident occurred. In terms of the flow-density relationship 
corresponding to the traffic model (illustrated in Figure 4), at low 
density values (region A), we can distinguish between speed obser
vations that we expect the different fundamental diagrams to 
predict.

However, in region B of Figure 4, the fundamental diagrams 
coincide and cannot be distinguished from speed and density 
observations. Specifically, given high densities and low-speed mea
surements, we would not be able to determine whether the observa
tions correspond to congested conditions in an incident-free 
fundamental diagram or if there is a reduction in physical capacity. 
Note that poor observability under congested conditions is not 
specific to the triangular fundamental diagram. For any fundamen
tal diagram shape, if the incident fundamental diagram under 
congested conditions maintains a similar form to the incident-free 
fundamental diagram, then it will be difficult to identify the true 
road condition using the measured speed-density data. In terms of 
the parameters EnKF, poor observability impacts the error covar
iance matrix P; in particular, the variance of parameter state vari
ables that are poorly observable increases with time.

To address this estimation problem under congested conditions 
(region B), we propose the use of unmanned aerial vehicles to 
directly estimate the incident state. We consider that the UAV 
can collect accurate density measurements as well as uf 

observations up to observation errors. We also assume that UAV 
density measurements are more accurate than loop detector data. 
Thus, in the traffic densities EnKF (Equations 3–10), the compo
nent of dρ at the UAV location uses UAV measurements. Similarly, 
the measurement error covariance matrix Rρ reflects the UAV 
observation error at the UAV location.

As for the parameters EnKF, in addition to the parameter 
updates performed when speed measurements are observed 
(Equations 28–36), the parameters are also updated once the 
UAV arrives at an incident prone location through Equations 37– 
45. In Equation 41, duf is a scalar representing the UAV uf observa
tion at the incident prone location, where εuf ,Nð0; σ2

uf
Þ is the 

measurement error. In contrast to Equation 35, since the state 
variables are directly observed, the update Equation 44 uses 
a linear observation operator H; in this case, H is a 1�Muf row 
vector with 1 at the component of uf that is observed and 0 every
where else. 

utþΔtjt
f ;i ¼ ut

f ;i þ z (37) 

A ¼ utþΔtjt
f ;1 ; utþΔtjt

f ;2 ; . . . ;utþΔtjt
f ;N

h i
(38) 

Â ¼ Mðut
f ;1Þ;Mðu

t
f ;2Þ; . . . ;Mðut

f ;NÞ
h i

(39) 

�A ¼ A1N (40) 

dj ¼ duf þ εuf
j "j 2 f1; ::;Ng (41) 

D ¼ d1; d2; . . . ; dN½ � (42) 

Υ ¼ εuf
1 ; ε

uf
2 ; . . . ; εuf

N
� �

(43) 

Aa ¼ A
þ ðA � �AÞðA
� �AÞTHTðHðA � �AÞðA � �AÞTHT þ ΥΥTÞ

� 1
ðD � HAÞ

(44) 

Figure 4. Change in fundamental diagram with increasing incident severity using monotonic uf , ρcr updates. Dashed lines correspond to incident fundamental diagram. In 
region B, the fundamental diagrams cannot be differentiated using speed-density observations.

TRANSPORTATION LETTERS 7



P ¼
1

N � 1
ðAa � Aa1NÞðAa � Aa1NÞ

T (45) 

A-optimal control trajectory planning objective

Thus, given the additional measurements that could be collected 
using a UAV, we develop a path planning algorithm that navigates 
the UAV toward informative observations. In particular, the navi
gation algorithm identifies UAV paths that minimize the antici
pated future variance associated with the dual EnKF traffic/ 
parameter state estimates. To minimize the mean uncertainty in 
an online setting where the state covariance matrices are continu
ously updated, we develop a one-step lookahead path planning 
algorithm. Effectively, the proposed algorithm navigates the UAV 
toward congested locations where it is difficult to infer the incident 
severity from speed-density data. Navigating the UAV to minimize 
the average variance of the traffic/parameter state estimates is an 
instance of A-optimal control (Atkinson, Donev, and Tobias 2007; 
Sim and Roy 2005; Ucinski 2004).

Let ψtþΔT
p denote the traffic or parameter state vector after ΔT 

future UAV and density observations along path p. In addition, let 
ψ̂tþΔT

p be the corresponding vector of best traffic or parameter state 
estimates (i.e., the ensemble mean). The average variance of ψtþΔT

p 
represents the future uncertainty in the system if path p is traversed 
by the UAV; this average variance is denoted by JtþΔT

p and is defined 
in Equation 46. Observe that the uncertainty measure reduces to the 
trace of the future covariance matrix PtþΔT

p . 

JtþΔT
p ¼ E½jjψtþΔT

p � ψ̂tþΔT
p jj

2
2� ¼

trðE½ðψtþΔT
p � ψ̂tþΔT

p ÞðψtþΔT
p � ψ̂tþΔT

p Þ
T
�Þ ¼ trðPtþΔT

p Þ

(46) 

The units chosen to represent densities/speed impact the magni
tude of the resulting uncertainty measure JtþΔT

p (Sim and Roy 2005). 
As a result, to compare the relative uncertainty between traffic 
densities and parameters, we normalize the uncertainty measure 
based on the scale of each state variable. Since the dual EnKF 
maintains separate error covariance matrices, JtþΔT

p can be com
puted separately for traffic densities and incident parameters. Then, 
we can define an aggregate uncertainty measure that is a weighted 
sum of the trace matrices, where we use the weights λ 2 ½0; 1� to 
account for the differences in scale between densities and free flow 
speeds. The weights can also be used to represent the importance of 
minimizing the uncertainty on parameters relative to traffic densi
ties. In addition, we should further normalize the uncertainty mea
sure based on the number of traffic state variables K in the densities 
EnKF and the number of parameters V in the free flow speeds 
EnKF. To be more precise, let JtþΔT

p;ρ denote the trace of the traffic 
densities covariance matrix after ΔT EnKF updates using UAV and 
density observations along path p. Furthermore, let JtþΔT

p;uf 
be the 

corresponding measure for free flow speeds. We can specify the 
aggregate future uncertainty measure JtþΔT

p associated with path p 
as in Equation 47. Then, we aim to determine the path p� that 
minimizes this aggregate uncertainty measure among the set of m 
candidate trajectories fp1; ::; pmg as shown in Equation 48. 

JtþΔT
p ¼

λ
V

JtþΔT
p;uf
þ
ð1 � λÞ

K
JtþΔT

p;ρ (47) 

p� ¼ argminp1;::;pm JtþΔT
p (48) 

To compute ψ̂tþΔT
p and JtþΔT

p , we need to embed an EnKF that 
propagates ensemble members at the current time t into the future 
t þ ΔT using anticipated observations along path p. Therefore, the 
framework in Figure 1 is composed of (1) a global dual EnKF that 
updates state error covariance matrices at every time step using 
actual UAV and ground sensor measurements, and (2) multiple 
dual EnKFs that are initiated at every time step to propagate current 
ensemble members into the future based on anticipated measure
ments along each path.

Thus, to compute JtþΔT
p , we need to define the anticipated 

observations along candidate paths. We can determine the UAV 
location at every time step in ΔT using the UAV speed and its 
direction of movement along a path. We also assume that the UAV 
can observe a specified length of the road underneath its location. 
Then, for every future time step in ΔT, we assume that the density 
observations will be equal to the mean of density ensembles propa
gated by the forward model. In other words, the cell transmission 
model CTMΔt is used to propagate the density ensembles at time t 
up to the desired time step, and the mean of the propagated 
ensembles is considered to be the future density measurements. 
Similarly, for the free flow speed observations, we propagate the 
current ensembles into the future using the random walk forward 
model and consider the ensemble mean to be the anticipated 
observations.

In summary, using the anticipated observations along each path, 
we use the embedded EnKFs to generate the future covariance 
matrix PtþΔT

p , we compute the uncertainty measure JtþΔT
p , and we 

determine the uncertainty minimizing UAV path p�.

Online path planning

Once the UAV moves along the variance minimizing path p� as 
determined by the trajectory planning objective in Equations 47 
and 48, it feeds accurate density measurements and direct uf obser
vations to the global dual state EnKF. Then, the global dual state 
EnKF updates the traffic/parameter state estimates, covariance 
matrices, and CTMΔt parameters based on observations from all 
available sensors (loop detectors, probe vehicles, and UAV mea
surements). Since the network information is continuously 
updated, the resulting anticipated future uncertainty measure 
JtþΔT

p dynamically changes. Thus, to calculate JtþΔT
p , the covariance 

matrix after ΔT time steps should be obtained by propagating the 
current ensembles into the future using the embedded EnKFs. In 
other words, JtþΔT

p must be re-calculated at every update step using 
the updated covariance matrices, UAV position, and traffic model.

Algorithm 2 Dual EnKF for traffic densities and free flow speed 
parameters at incident prone locations

Initialization:
(1) Define CTM∆t based on incident-free calibrated parameters
(2) Create initial ensembles for densities across cells
(3) Create initial ensembles for free flow speeds at incident 

prone locations
(4) Set initial UAV location
Dual EnKF & UAV navigation:
for time in estimation horizon do
(5) Propagate and update density ensembles using Equations 3– 

10 (use UAV density measurements at UAV location)
if get speed observation then
(6) Propagate and update free flow speeds ensembles using 

Equations 28–36
(7) Update critical density estimates using Equation 22 and the 

free flow speed best estimates
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(8) Adjust parameters in CTM∆t 
basedonupdatedfreeflowspeedandcriticaldensityestimates

if UAV at incident prone location then
(9) Propagate and update free flow speeds ensembles using 

Equations 37–45
(10) Update critical density estimates using Equation 22 and the 

free flow speed best estimates
(11) Adjust parameters inCTM∆t 

basedonupdatedfreeflowspeedandcriticaldensityestimates
(12) Generate possible UAV paths from current location
(13) For∆T future time steps, determine UAV location at every 

time instant along each path
(14) Generate anticipated UAV observations along candidate 

paths
(15) Use the embedded dual state EnKFs for ∆T steps into the 

future to determineJtþΔT
p along each candidate path

(16) Move the UAV in the direction of p* (the path that mini
mizes JtþΔT

p )

Results

To demonstrate the benefit of targeted observation in improving 
incident detection and traffic state estimation, we implement the 
proposed algorithms on a freeway with an off-ramp modeled in 
VISSIM. For comparison, we also implement the California algo
rithm (a data-driven approach developed by Payne, Helfenbein, and 
Knobel (1976) for detecting incidents). The freeway length, UAV 
starting position, and incident prone locations are shown in 
Figure 5. In this figure, clouds indicate incident locations and the 
middle circle indicates the UAV starting position.

Field data collected by Pan et al. (2013) and Quiroga et al. (2004) 
suggest that the maximum speed under incident conditions is in the 
range of 15–30 km/hr. Thus, to model non-recurrent congestion at 
incident prone locations in VISSIM, we specify a reduced speed 
zone where the maximum speed is set at 20 km/hr. To simulate 
congested incident conditions upstream (region B in Figure 4) and 
uncongested incident conditions downstream (region A in 
Figure 4), we consider that at node 2 half of the inflow demand 
continues on to node 4 while the other half takes the off-ramp.

For the traffic densities EnKF (Equations 3–10), we assume that 
Qρ is a diagonal matrix such that the diagonal entries are all 
ð5veh=kmÞ2. We also assume that Rρ is a diagonal matrix with 
elements ð10veh=kmÞ2. However, when a traffic density state vari
able is observed by a UAV, the corresponding component in Rρ is 
ð2veh=kmÞ2. For the incident parameters EnKF, we consider that 
Quf is a diagonal matrix with entries ð5km=hrÞ2. When speed 
measurements are observed (Equations 28–36), the measurement 
error covariance matrix Rv is a diagonal matrix with entries 
ð5km=hrÞ2. When a UAV directly observes incident conditions 
(Equations 37–45), the measurement error σ2

uf 
is ð10km=hrÞ2. The 

number of ensembles N in each EnKF is 100. We consider that loop 
detectors feed density measurements at every time step (10 sec
onds), and that speed measurements are collected from GPS 
equipped probe vehicles every 30 time steps (5 minutes). The initial 

calibrated model parameters in the estimation procedure are as 
follows: ρ0

cr ¼ 80veh=km, u0
f ¼ 100km=hr, ρj ¼ 300veh=km.

For UAV path planning (Algorithm 2), we set λ ¼ 0:5 to repre
sent equal weights for traffic densities and parameter state uncer
tainty measures. In Section 5.2, we further study the impact of the 
weight λ on the UAV trajectory. We determine ΔT dynamically as 
the number of time steps until the UAV reaches node 1 if it is 
traveling upstream, or the number of time steps until it reaches 
node 4 if it is traveling downstream. In addition, we assume that the 
UAV can observe 250 meters at every time step.

Traffic state and incident detection estimation results

We evaluate the performance of the proposed estimation (EnKF) 
and estimation-planning (UAV-EnKF) algorithms under three dif
ferent levels of inflow (at node 1) demand: 3000 veh/h, 6600 veh/h, 
and 7200 veh/h. Figure 6 illustrates the density estimates relative to 
the true simulation data at the upstream incident location. In this 
figure, the links are discretized into cells that are used by the cell 
transmission model, and the upstream incident occurs at cells 6 and 
7. As shown in Figure 6, since densities are directly observed by 
ground sensors, they are accurately estimated by both EnKF and 
UAV-EnKF algorithm.

To further analyze the density estimates, we define δðtÞ as the 
average deviation of estimates from the true density values. 
Precisely, δðtÞ is defined as the average (across cells f0; ::; ng at 
time t) of the absolute differences between the estimates and true 
densities. In Equation 49, ρ̂ðx; tÞ is the density estimate at cell x and 
time t and �ρðx; tÞ is the true density value at cell x and time t. In 
Figure 7, we illustrate the variation in δðtÞ across time for the EnKF 
and UAV-EnKF algorithms. We observe that the UAV-EnKF esti
mates are better than the corresponding EnKF estimates as indi
cated by a lower average absolute deviation δðtÞ. 

δðtÞ ¼
1
n

Xn

x¼0
jρ̂ðx; tÞ � �ρðx; tÞj (49) 

In terms of model parameters representing incidents (uf and 
ρcr), we illustrate in Figure 8 (upstream incident location) and 
Figure 9 (downstream incident location) the free flow speed uf 
estimates. We also illustrate in Figure 10 the corresponding critical 
density updates at the upstream incident location, where the critical 
density at any stage is updated according to Equation 22.

As shown in Figures 8 and 10, under congested conditions 
(demand =6600veh/hr and 7200veh/hr) at the upstream incident 
location, the EnKF estimates do not represent the true incident 
conditions. The poor uf and ρcr estimates are caused by the simi
larity between incident and congested incident-free measurements 
(high density and low-speed measurements); in particular, this 
similarity leads to poor observability as previously discussed in 
Section 4. On the other hand, when the inflow demand is low, the 
EnKF accurately determines the true uf and ρcr parameters.

To analyze the incident detection performance further, we 
implement the California data-driven incident detection algorithm. 
The California algorithm was proposed by Payne, Helfenbein, and 
Knobel (1976) and further analyzed by Parkany and Xie (2005); 

Figure 5. VISSIM network.
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Figure 6. True density values, EnKF density estimates (Algorithm 1), and UAV-EnKF density estimates (Algorithm 2) at the upstream incident location (cells 6 and 7).

Figure 7. Average of the absolute differences between the estimates and true density values.
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Stephanedes and Chassiakos (1993); Wang, Work, and Sowers 
(2016b). The algorithm applies three different tests that compare 
occupancy data upstream and downstream of the incident prone 
location to predefined thresholds. In our implementation, we use 
the same thresholds that Wang, Work, and Sowers (2016b) used 

(T1 = 0.27, T2 = 0.55, and T3 = 0.0003). Parkany and Xie (2005); 
Payne, Helfenbein, and Knobel (1976), provide additional details 
on algorithm implementation. As shown in Table 1, the California 
algorithm was not able to detect the incidents under low/intermedi
ate flow conditions ( � 3600veh/hr). This failure in detection is 

Figure 8. Free flow speed uf estimates generated by the EnKF and UAV-EnKF algorithms at the upstream incident location.

Figure 9. Free flow speed uf estimates generated by the EnKF and UAV-EnKF algorithms at the downstream incident location.

Figure 10. Critical density ρcr estimates generated by the EnKF and UAV-EnKF algorithms at the upstream incident location.

Table 1. Incident detection performance for California, EnKF, and UAV-EnKF algorithms.

3000 veh/h 6600 veh/h 7200 veh/h

upstream downstream upstream downstream upstream downstream
California not detected not detected detected not detected detected not detected
EnKF detected detected not detected detected not detected detected
UAV-EnKF detected detected detected detected detected detected
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caused by the lack of propagation of incident information. In other 
words, since the traffic flow is relatively low, queues do not build up 
toward the sensor upstream of the incident; thus, the algorithm is 
not capable of detecting a significant difference in occupancy 
between sensor measurements upstream and downstream of the 
incident.

The inability of the California algorithm to detect incidents 
when the demand is low and the inability of the EnKF algo
rithm to detect incidents when the demand is high can be 
considered as Type II errors. In this case, Type II errors repre
sent rejecting the hypothesis that there are no incidents even 
though an incident exists. However, comparative data-driven 
methods such as the California algorithm may also result in 
Type I errors (reporting an incident under incident-free condi
tions) due to random fluctuations in the data (Parkany and Xie 
2005; Stephanedes and Chassiakos 1993). In contrast, model- 
based filtering algorithms such as the EnKF incorporate sensor 
noise in the estimation procedure, where the extent of correc
tion to match the measurements and the associated variance of 
the estimates depends on the magnitude of the sensor noise 
relative to the model noise. As for the UAV-EnKF approach, we 
assume that the incident condition can be accurately and 
instantaneously detected by UAV images once the UAV arrives 
at the incident location. Similar to our work, Wang, Work, and 
Sowers (2016b) studies the incident detection performance in 
simulation across varying congestion levels, and they also report 
that the California algorithm fails to detect incidents when the 
demand is low ( � 4000 veh/hr).

UAV path planning

The UAV trajectory is determined by the average variance on 
density and parameter estimates as defined by Equations 46 and 
47. Recall that we expect the variance on the EnKF parameter 
estimates to have an increasing trend under congested conditions 
(region B of Figure 4), where this increasing trend results from poor 
observability. To illustrate, we show in Figure 11 the trace of the uf 
covariance matrix at the upstream incident location. We observe 
that under congested conditions, the average variance trðPÞ asso
ciated with the EnKF algorithm is increasing with time. Another 
indication of the increase in average variance under congested 
conditions is the smoothness of the parameter estimates. As 
shown in Figure 8, when the inflow demand is 3000veh/hr, the 
parameter estimates are smoother than the corresponding estimates 
under congested conditions (demand =6600 or 7200veh/hr).

To further illustrate the impact of uncertainty on the UAV 
trajectory, we show in Figure 12 the UAV path for varying inflow 
demand. Since the traffic density is higher at the upstream incident 
relative to the downstream incident, we observe that the UAV 
spends more time at the upstream incident location (the average 
variance on parameter estimates would be higher upstream). In 
addition, as the inflow demand increases, we observe that the 
UAV will spend relatively more time at the increasingly congested 
upstream incident location.

We also study the impact of the weighting factor λ in 
Equation 47 on the UAV trajectory, where λ weights the average 
variance on the parameter estimates relative to the average variance 

Figure 11. Trace of the uf covariance matrix associated with the EnKF estimates at the upstream incident location. λ ¼ 0:5.

Figure 12. UAV trajectory for different levels of inflow demand. The heatmap corresponds to uf estimates. λ ¼ 0:5.
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on the traffic density estimates. Figure 13 illustrates the UAV 
trajectory and parameter estimates for different values of λ when 
the demand is 6600veh/hr (λ ¼ 0:5 is shown in Figure 12). As 
observed, when λ ¼ 0, indicating that the path planning objective 
is dominated by the uncertainty on the density estimates, the UAV 
does not navigate toward the incident locations; in turn, this results 
in poor parameter estimates at the upstream incident location. 
When λ > 0, we observe that the UAV navigates toward the incident 
locations and that the corresponding parameter estimates reflect the 
true incident severity. As λ increases (i.e., the weight on the variance 
of parameter estimates increases), we observe that the UAV spends 
more time closer to the congested upstream incident location.

Conclusion

Non-recurrent congestion is a primary source of travel time 
variability and congestion delays. Traditional data-driven meth
ods for detecting incidents are susceptible to false alarms. In 
addition, data-driven methods lack a traffic model for predicting 

the congestion state beyond the incident location. On the other 
hand, methods that use a macroscopic traffic model to simulta
neously estimate traffic conditions and incident severity suffer 
from poor observability in congested conditions; in particular, it 
is difficult to distinguish speed/density measurements under 
incident-free congested conditions from similar observations 
due to incidents.

We propose a planning-estimation framework that relies on 
unmanned aerial vehicles (UAVs) to generate targeted observations. 
Specifically, we develop an online one-step lookahead algorithm that 
uses a dual ensemble Kalman filter (EnKF) to determine the uncer
tainty minimizing UAV path. In the dual EnKF estimation proce
dure, we implement a parameter update technique that maintains 
a monotonic relationship between observed measurements and para
meters. We test the UAV planning-estimation framework on 
a freeway segment and compare its performance against methods 
that do not use targeted incident observations. We observe that the 
UAV observations aid in detecting the road condition when it is 
otherwise difficult to infer the road state from the speed-density data.

Figure 13. UAV trajectory for different values of the mean uncertainty weighting factor λ. The heatmap corresponds to uf estimates. Inflow demand =6600 veh/h.
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