
Article

Transportation Research Record
2018, Vol. 2672(48) 116–126
� National Academy of Sciences:
Transportation Research Board 2018
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0361198118799039
journals.sagepub.com/home/trr

Network Partitioning Algorithms for
Solving the Traffic Assignment Problem
using a Decomposition Approach

Cesar N. Yahia1, Venktesh Pandey1, and Stephen D. Boyles1

Abstract
Recent methods in the literature to parallelize the traffic assignment problem consider partitioning a network into subnet-
works to reduce the computation time. In this article, a partitioning method is sought that generates subnetworks minimizing
the computation time of a decomposition approach for solving the traffic assignment (DSTAP). The aim is to minimize the
number of boundary nodes, the interflow between subnetworks, and the computation time when the traffic assignment prob-
lem is solved in parallel on the subnetworks. Two different methods for partitioning are tested. The first is an agglomerative
clustering heuristic that reduces the subnetwork boundary nodes. The second is a flow weighted spectral partitioning algo-
rithm that uses the normalized graph Laplacian to partition the network. The performance of both algorithms is assessed on
different test networks. The results indicate that the agglomerative heuristic generates subnetworks with a lower number of
boundary nodes, which reduces the per iteration computation time of DSTAP. However, the partitions generated may be
heavily imbalanced leading to a higher computation time when the subnetworks are solved in parallel separately at a particular
DSTAP iteration. For the Austin network partitioned into four subnetworks, the agglomerative heuristic requires 3.5 times
more computation time to solve the subnetworks in parallel. The results also show that the spectral partitioning method is
superior for minimizing the interflow between subnetworks. This leads to a faster convergence rate of the DSTAP algorithm.

The traffic assignment problem (TAP) is used to predict
route choice and link flows for a given travel demand.
The static version of this problem can be formulated as a
convex program and solved efficiently using modern spe-
cialized algorithms (1–3). However, there are computa-
tionally demanding problems that require solving TAP
multiple times or solving TAP on a large network. Those
problems include bi-level mathematical programs with
equilibrium constraints, solving TAP on statewide or
national network models, and Monte Carlo simulations
(4, 5).

Methods for parallelizing the TAP to decrease compu-
tation time have been studied recently (4, 6, 7). The
decomposition approach to the static TAP (DSTAP)
was developed to decrease computation time by solving
the TAP in parallel on partitions of the full network (4).
This approach creates subproblems for each partition
and a master problem that equilibrates traffic across sub-
networks. The master problem also includes regional
traffic that has an origin or a destination outside a cer-
tain subnetwork or in two different subnetworks. To find
equilibrium in this master–subproblem framework, the
DSTAP algorithm exploits the equilibrium sensitivity

analysis method developed in Boyles (8) to generate arti-
ficial links that represent paths between network nodes.
DSTAP is shown to converge to the global equilibrium
solution for a general network and its computation time
is stated to depend on the subnetwork partitions (4).

The objective of this study is to identify and test parti-
tioning algorithms that can improve the performance of
a DSTAP. It seeks to generate partitions that minimize
the number of boundary nodes and the interflow between
subnetworks. These requirements minimize the interac-
tions between subnetworks, which influences the time
needed to converge to a global equilibrium in a frame-
work such as DSTAP. In addition, the study seeks parti-
tions that minimize the computation time needed to solve
the TAP in parallel for the subnetworks. This refers to
the per iteration lower level subproblems in DSTAP.
With this motivation and objective in place, two

1Department of Civil, Architectural and Environmental Engineering, The

University of Texas at Austin, TX

Corresponding Author:

Address correspondence to Cesar N. Yahia: cesaryahia@utexas.edu

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/0361198118799039
https://journals.sagepub.com/home/trr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0361198118799039&domain=pdf&date_stamp=2018-10-05


algorithms are tested in the analysis. The first algorithm
is proposed by Johnson et al. (9) for objectives similar to
those required in this paper. The second algorithm is
based on flow weighted spectral partitioning. The perfor-
mance of the algorithms on real-world networks is com-
pared against the stated objectives.

The remainder of this paper describes methods to par-
allelize TAP and evaluates the performance of the parti-
tioning algorithms. The next section reviews current
methods for solving TAP and partitioning networks. The
third section presents the algorithms evaluated and their
use in the DSTAP framework. The fourth section pre-
sents demonstrations for different transportation net-
works. The fifth section concludes the paper.

Literature Review

This section summarizes existing literature in the follow-
ing areas: the latest advancements in methods for solving
the TAP, a parallelization approach to the TAP, and the
need for efficient network partitioning algorithms.

Algorithms for solving TAP are generally classified as
either link-based, path-based, or bush-based. Link-based
methods work in the space of link flows and require less
operational memory than path-based methods, but are
much slower to converge (10, 11). Bush-based methods
exploit the acyclic nature of paths that are used by origins
at equilibrium (2, 3, 12, 13). Recent work also includes e-
optimal improved methods for solving TAP on large
problems (14). Although recent advancements have
improved the state-of-the-art for solving TAP efficiently,
there is still a need for faster methods. Computationally
demanding instances include solving TAP on large-scale
statewide models and solving TAP iteratively in network
design problems with equilibrium constraints (5, 15).

To address the computational demands of large-scale
or iterative traffic assignment problems, methods that
aim to parallelize TAP have been developed. Bar-Gera
describes a parallelization approach based on the paired-
alternative segments (6). The algorithms proposed in
Chen and Meyer (16) and Lotito (17) also parallelize
TAP by decentralizing the computations for each origin–
destination (OD) pair. A decomposition approach for
static traffic assignment (DSTAP) developed by Jafari
et al. (4) parallelizes TAP by network geography instead
of the traditional decomposition approach by OD pairs.
This article aims to identify partitioning algorithms that
minimize the computation time per iteration of DSTAP
and the total computation time required to reach conver-
gence. Proofs of convergence and correctness of DSTAP
are provided in Jafari et al. (4).

The literature on network partitioning algorithms is
extensive. These algorithms can be broadly classified into
agglomerative/divisive heuristics, integer programming

based approaches, and spectral partitioning algorithms.
Integer programming formulations for the partitioning
problem are proven to be NP-hard (18) and approxima-
tion heuristics have been proposed (18, 19).

Heuristics for generating partitions based on agglom-
erative and divisive clustering have been recently used in
various transportation related applications. Saeedmanesh
and Geroliminis used an agglomerative clustering heuris-
tic for generating partitions based on ‘‘snake’’ similarities
for applications of the macroscopic fundamental diagram
(20). Etemadnia et al. developed similar heuristics for dis-
tributed traffic management (18). Johnson et al. devel-
oped another heuristic for decentralized traffic
management (9). This heuristic aims to minimize bound-
ary nodes in subnetworks and to create subnetworks of
similar size. Their heuristic performed better than the
METIS algorithm proposed in (21).

Spectral partitioning is an alternative approach for
partitioning a graph (22–26). Bell applied a capacity-
weighted form of the spectral partitioning methods to
investigate network vulnerability (27). Other transporta-
tion applications include air traffic control and urban
traffic signal control systems (28, 29). The partitioning
mechanism is based on the eigenvalues associated with
the graph Laplacian. The partitions that result from
spectral partitioning have low intercluster similarity (23).
Additionally, using the normalized Laplacian generates
graphs that are balanced by weight. This is an important
feature because ignoring the balance requirement results
in cuts that isolate a small number of peripheral nodes.
For example, the minimum cut program that aims to
minimize the weight between resulting partitions will
often result in separating one node from the rest of the
network (25). However, incorporating balance require-
ments causes cut problems to become NP-hard. Spectral
partitioning is an approximate method for obtaining a
cut with minimal cut cost while satisfying balance
requirements (22, 25, 26).

Network Partitioning for Decentralized
Traffic Assignment

Consider a directed network G defined by a set of nodes
N and set of edges A. Let M be the node–node adjacency
matrix for the network. M is an Nj j3 Nj j matrix, with
elements mij equal to 1 if there is a link connecting node i

to j and zero otherwise. The weighted adjacency matrix
MD

G is also defined with elements m
G,D
i, jð Þ equal to w i, jð Þ if

i, jð Þ 2 A and zero otherwise, where w i, jð Þ is the weight
assigned to link i, jð Þ 2 A. In this article, it is assumed
that w i, jð Þ is the flow on link i, jð Þ. To construct a graph
Laplacian, the method uses an undirected version of MD

G ,
denoted by MG, defined as the sum of MD

G and its trans-
pose. The elements of MG are mG

i, jð Þ. The graph diagonal

Yahia et al 117



matrix DG is defined as a diagonal matrix with principal
diagonal elements in row i as the sum of elements in row
i of MG: dii =

P

j

mG
i, jð Þ. The graph Laplacian is defined as

LG =DG �MG.

Decomposition Approach to the Static TAP

This study aims to partition a large-scale network into
subnetworks such that an algorithm based on the
DSTAP is solved efficiently. To properly define the
objectives of the partitioning algorithms, it is necessary
to review the main elements of the DSTAP algorithm
developed by Jafari et al. (4).

DSTAP is an iterative aggregation–disaggregation
algorithm consisting of two levels, a master problem and
a set of lower level subproblems corresponding to the
respective subnetworks. A subproblem corresponds to
solving the TAP for a specific subnetwork. The master
problem is used to model interactions between the sub-
problems. In the master problem, the subnetworks are
aggregated using first order approximation methods
based on equilibrium sensitivity analysis (8, 30). This
results in artificial links representing the subnetworks in
the master level problem. The algorithm proceeds by sol-
ving the subproblems in parallel, aggregating the subnet-
works using artificial links, shifting flow towards
equilibrium in the simplified master level network,
obtaining subnetwork boundary flow from the master
level iteration, and then proceeding to disaggregate the
flow on subnetworks and solving the subproblems in
parallel again. This procedure is repeated until conver-
gence to a global equilibrium as shown in Figure 1.

The computational performance of DSTAP at each
iteration depends on the number of artificial links. These
links need to be updated at each iteration using equili-
brium sensitivity analysis to incorporate the latest infor-
mation on travel costs. To reduce the number of
artificial links generated, the number of boundary nodes
associated with the subnetworks needs to be minimized.
In addition to the regional artificial links that approxi-
mate subnetworks at the master level, there are subnet-
work artificial links generated for each subproblem to
represent flow that originates from a subnetwork then
traverses other subnetworks before returning to the sub-
network. To reduce subnetwork artificial links, the flow
traversing multiple subnetworks needs to be minimized.

The computational performance at each iteration is
also influenced by the time needed to solve the TAP in
parallel for the subnetworks. This represents solving the
K lower level subproblems in Figure 1. The computation
time needed to solve the subproblems in parallel is domi-
nated by the subproblem that requires the greatest com-
putational cost. Therefore, to reduce this computation
time, the subproblems need to be balanced in size. This

can be achieved by balancing the flow distribution across
subnetworks, as opposed to having few subnetworks con-
taining the majority of travel demand.

Consider the maximum excess cost termination cri-
teria defined as the greatest difference between the long-
est used path and the shortest path for each OD pair. It
was shown in Jafari et al. (4) that the maximum excess
cost for the full network eOD is bounded by the total
number of boundary points across subnetworks ~B multi-
plied by the sum of the maximum excess cost for the mas-
ter level regional network er

OD and the maximum excess
cost for all subnetworks es

OD as shown in Equation 1.
Therefore, to reach convergence faster, the rate at which
the bound in Equation 1 tightens must be increased. The
subproblem maximum excess cost es

OD can be reduced by
solving the subproblems to a low gap level. After approx-
imating the subnetworks with artificial links, the master
level maximum excess cost er

OD could be obtained. It is
noted that if the interflow between subnetworks is mini-
mized, then the artificial links representing the subnet-
works will have a similar cost structure across successive
iterations because the influence of external flows on sub-
network equilibrium is reduced. Therefore, the least cost
path in the master level regional network would be rela-
tively invariant across iterations. This implies that er

OD

could be reduced at a higher rate. In the extreme case in
which the master level least cost path is completely domi-
nated by constant costs on artificial links, the maximum
excess cost could be reduced to zero by placing all the
regional flow on the path with the least cost artificial
links. Thus, faster convergence could be reached by mini-
mizing the interflow between subnetworks. Convergence
rate can also be increased by minimizing the number of
boundary nodes ~B as shown in:

eOD ł 2~B er
OD + es

OD

� �
ð1Þ

Partitioning Algorithms

The study tests the performance of two algorithms that
aim to partition the network such that the computation
time for a decomposition approach to solve traffic assign-
ment is minimized.

Domain Decomposition Algorithm. The first heuristic algo-
rithm tested is the shortest domain decomposition algo-
rithm (SDDA) proposed in Johnson et al. (9). This
algorithm works in an agglomerative fashion and con-
structs a given number of partitions such that the num-
ber of boundary nodes between the subnetworks is
minimized (primary objective) and the partitions are
balanced in size (secondary objective). SDDA only
depends on the topological properties of the graph. This
feature is desirable when limited information is available

118 Transportation Research Record 2672(48)



on link costs, flow between OD pairs, or other data that
could form the basis of a partitioning algorithm. The
computation time per DSTAP iteration is reduced by
minimizing the boundary nodes and generating balanced
subnetworks. Minimizing the number of boundary nodes
would also improve the convergence rate.

The sequential steps of SDDA are shown in
Algorithm 1. The algorithm constructs the partitions by
identifying source nodes which are ‘‘far’’ from each other
given a distance measure. The number of links on a
breadth-first search tree between two nodes is used as
the distance measure. This distance measure indicates the

Figure 1. Algorithm for the DSTAP (4).

Yahia et al 119



extent of separation of two nodes and is used to deter-
mine association of a node to the source nodes of the
partitions. The reader is referred to Johnson et al. (9) for
more information on this algorithm.

Spectral Partitioning. Spectral graph theory is used to study
network properties using the graph Laplacian. The eigen-
values and eigenvectors of the Laplacian matrix can be
used to identify low cost graph cuts. The cost of a cut is
defined as a ratio of the weights on cut links to the size
of the smaller subnetwork separated by the cut (23, 25).

The eigenvalues of an undirected graph Laplacian are
real because the matrix is symmetric (22). Let u represent
the eigenvectors and l the eigenvalues. The relation
between the eigenvectors and eigenvalues for the graph
Laplacian is shown in Equation 2. According to
Spielman (22), the eigenvalues can be defined using
Equation 3, where S is a vector space of dimension i, and
i is the index of eigenvalue li arranged in an ascending
order. The eigenvector for the corresponding eigenvalue
can be found using Equation 4:

LGui = liui ð2Þ

li = min
S of dim i

max
x2S

xT LGx

xT x
ð3Þ

ui = argmin
S of dim i

max
x2S

xT LGx

xT x
ð4Þ

The Laplacian matrix LG is also positive definite and
thus the eigenvalues are non-negative. The second smal-
lest eigenvalue and associated eigenvector obtained from

Equations 3 and 4 can be used to partition the graph.
The resulting partition is an approximation of the cut
that minimizes the ratio cut in Equation 5, where
cut A, �Að Þ is the sum of the weights on the links separat-
ing the subnetworks A and �A that are generated from the
cut. The denominator of the ratio cut is the size of the
smaller subnetwork A, where the size is determined by
the number of nodes in A. Minimizing the ratio cut aims
to find a cut with minimal weights on the links separat-
ing the subnetworks, and to maintain a balance in size of
the generated subnetworks (25):

ratio cut=
cut A, �Að Þ

Aj j ð5Þ

To improve the efficiency of DSTAP, a flow weighted
version of the Laplacian is used such that the cut cost in
Equation 5 represents the interflow between subnet-
works. This will improve the convergence rate of
DSTAP. The Laplacian matrix is also normalized using
Equation 6 in a manner similar to (22, 24–26). This nor-
malization will generate partitions that are balanced by
the total flow within the partitions instead of the number
of nodes in Equation 5. In the DSTAP framework, bal-
ancing the partitions by flow would reduce the per itera-
tion computation time needed to solve the subproblems
in parallel:

Lsymm =D
�1=2
G LGD

�1=2
G ð6Þ

After calculating the second smallest eigenvalue and
associated eigenvector of the normalized Laplacian, the
nodes of the network are sorted based on the magnitude

Algorithm 1 Shortest domain decomposition algorithm (9)

Step 1: Initialize
Let ns be the number of subnetworks/partitions to be generated.
Set Rn

s : = MAX
Step 2: Determine first source node
Set the rank of each node as the sum of the number of incoming and outgoing links.
Choose the node with lowest rank s1 as the first source node.
Step 3: Update the rank and determine other source nodes
For i in 2 : ns

Perform breadth-first search from every source node, sj 81 � j\i
Determine the rank of node n as an i� 1ð Þ-dimensional vector of which the elements are the distance of node n from source nodes sj

where 1 � j\i
Choose the node which has the highest total rank (sum of all elements in the rank vector). Resolve ties in favor of nodes which have

minimum value of the sum of pair-wise difference between each element of the rank vector.
Assign the chosen node as the ith source node si

Step 4: Populate subdomain associated with each source node
For each node, assign it to the source node to which it has the minimum distance.
Step 5: Identify system boundary nodes and allocate the subnetworks
For i, jð Þ 2 A do

if i and j are assigned to different source nodes then
Add i and j to the set of boundary nodes.

Stop.

120 Transportation Research Record 2672(48)



of the corresponding element in the eigenvector. The
sorted list of nodes is then divided into two parts based
on the signs of the corresponding eigenvector elements.
This will generate the required partitions (26, 27). The
full algorithm for the flow weighted spectral partitioning
is shown in Algorithm 6.

Because the spectral partitioning method proposed is
based on link flows, a few implementation issues need to
be considered. The use of the second smallest eigenvalue
as the basis for partitioning requires the graph to be con-
nected. Specifically, the weighted adjacency matrix MG

should result in a connected graph. Otherwise, the sec-
ond smallest eigenvalue will be zero. To ensure that the
component being partitioned is connected, a preproces-
sing stage precedes the spectral analysis. In this stage, the
links with zero flow are identified. If those links separate
the network into components such that each component
has positive intraflow, the spectral partitioning is per-
formed for each component separately. However, in
transportation networks, it is more likely to observe mul-
tiple components where only one component has flow.
In the study’s analysis, this occurred because of the exis-
tence of peripheral links that do not have any flow but
are included in the network geometry. In this case, those
links are ignored because they are not used, and should
not influence the partitioning of the main component.

Another consideration is the availability of flow values
for the links in the network. In the case in which the TAP
should be solved multiple times, solving the full network
once to obtain link flows is worthwhile because the flows
could be used to partition the network in subsequent
iterations. If the flow values on the links change each
time TAP is solved, the partitions could be updated itera-
tively. Alternatively, an approximate link flow solution
could be obtained by solving centralized traffic assign-
ment to a high gap value.

Demonstrations

The performance of algorithms is compared on a
hypothetical network consisting of two copies of the
Sioux Falls network and on three standard test networks:
Anaheim, Austin, and Chicago sketch (31). Considering

the previous discussion on the required computation time
in the DSTAP section, the analysis is divided into a sec-
tion on the computation time per iteration and another
section on the DSTAP convergence rate. It is noted that
computation time needed for partitioning is insignificant
for both SDDA and flow weighted spectral partitioning
(less than 1 s on a 3:3 GHz machine with 8 GB RAM),
and is thus not included in the analysis.

Computation Time per DSTAP Iteration

As mentioned in the section on the decomposition
approach for static traffic assignment, the computation
time per iteration of DSTAP is dominated by the num-
ber of artificial links created and the time required to
solve the subproblems in parallel.

The number of regional artificial links created is deter-
mined by the number of boundary nodes in the subnet-
works. Therefore, the number of boundary nodes
generated by each algorithm is compared. Note that the
primary objective of the SDDA algorithm is to reduce
the number of boundary nodes between the subnetworks.

The computation time required to solve the subpro-
blems in parallel could be reduced by balancing the size
of the subproblems. The flow weighted spectral parti-
tioning method aims to minimize the flow balanced cut
cost. If the cut cost is always equal to 1, the flow
weighted spectral partitioning method will divide the
flow equally among the subnetworks. This reduces the
computation time needed to solve the subproblems in
parallel. The SDDA algorithm creates subnetworks
that are balanced by number of nodes as a secondary
objective.

Table 1 shows the results for the number of subnet-
work boundary nodes generated by the algorithms and
the computation time needed to solve the subproblems
in parallel. Unless mentioned otherwise, the process is to
generate two subnetworks from each network. For mini-
mizing the number of boundary nodes SDDA performed
better than the flow weighted spectral partitioning
method for the Austin and Anaheim networks. This
result is expected because the objective of the flow
weighted spectral partitioning method is to minimize the

Algorithm 2 Flow weighted spectral partitioning

Step 1: Pre-process the network to remove links with zero flow
If removing zero flow links creates multiple components with positive flow, then partition each component separately.
Step 2: Calculate the flow weighted graph Laplacian
Step 3: Normalize the graph Laplacian using Equation 6
Step 4: Get the eigenvector to be used for partitioning
Step 5: Order the nodes of the graph based on the eigenvector
Step 6: Partition the network by dividing the ordered node list based on the sign of the corresponding eigenvector elements

Yahia et al 121



balanced interflow whereas SDDA minimizes the bound-
ary nodes. This implies that the number of regional arti-
ficial links generated by an SDDA partition will be
lower.

In terms of creating balanced subproblems, the flow
weighted spectral partitioning method performed better
than SDDA. The importance of balancing subproblems
by flow is demonstrated by the partitioning of the Austin
network into four subnetworks. The computation time
needed to solve the subproblems in parallel using the
SDDA partitions was approximately 3.5 times the corre-
sponding time resulting from the flow weighted spectral
partitioning algorithm. Figure 2 shows the partitions
generated for the Austin network. Subnetwork 1 in the
SDDA partition contains 65% of the flow. The

computation time associated with this subnetwork deter-
mines the computation time needed to solve the lower
level subproblems at each iteration of DSTAP. The max-
imum share of network flow within a subnetwork result-
ing from the flow weighted spectral partitioning
algorithm is 39%. For the Chicago sketch network,
SDDA also creates heavily imbalanced subnetworks with
one subnetwork containing 90% of the flow. If this net-
work was larger, the difference in subnetwork computa-
tion time would be significant.

DSTAP Convergence Rate

The study also measures the rate at which the DSTAP
algorithm converges towards a global equilibrium given

Figure 2. Partitioning of Austin regional network into four partitions: flow weighted spectral partitioning (left); SDDA (right).

Table 1. Comparison of Network Partitioning Algorithms

Network Boundary nodes Subnet computation time (s) Interflow

Austin (SDDA) 174 632:83 186161
Austin (spectral) 329 746:81 137940
Austin (4 subnets, SDDA) 296 290:97 368718
Austin (4 subnets, spectral) 440 82:50 296870
Anaheim (SDDA) 46 0:10 81991
Anaheim (spectral) 48 0:13 56539
Chicago sketch (SDDA) 74 9:79 154791
Chicago sketch (spectral) 50 7:42 201603

122 Transportation Research Record 2672(48)



the subnetworks generated from a specific partitioning
procedure. This convergence rate is tested using a
hypothetical network with two copies of Sioux Falls.
The network was created by replicating the Sioux Falls
network and adding artificial demand between the two
copies as shown in Figure 3. The artificial demand was

kept low at 1.5% of the total demand within each
network.

Figure 3 also shows the subnetworks generated by the
flow weighted spectral algorithm and by SDDA. The
generated partitions demonstrate the importance of flow
weighted spectral partitioning for networks which have

Figure 3. Partitioning of double Sioux Falls hypothetical network: flow weighted spectral partitioning (top); SDDA (bottom). The line
type defines different partitions.

Yahia et al 123



intuitive geographic concentrations such as networks in
statewide planning models with concentrated flow den-
sity in each city. The flow weighted spectral partitioning
method was able to identify each Sioux Falls network as
a separate component, as opposed to partitions gener-
ated by SDDA. In terms of subnetwork boundary nodes,
both partitions are equivalent.

In the DSTAP section, it was shown that faster con-
vergence could be achieved if the interflow between sub-
networks was minimized. The results in Table 1 and in
Figure 3 indicate that the flow weighted spectral parti-
tioning method is superior to the SDDA algorithm for
minimizing interflow. The only exception is for the
Chicago sketch network. However, the partition gener-
ated by SDDA for the Chicago sketch network was
heavily imbalanced with one partition containing 90% of
the flow. It is expected that the spectral partitioning
method will avoid such cuts because of the flow balan-
cing requirement.

Figure 4 shows the convergence rate of DSTAP for
the hypothetical double Sioux Falls network when parti-
tioned using the flow weighted spectral partitioning
method and SDDA. DSTAP converges to the global
equilibrium solution after approximately 135 iterations
using partitions generated from the flow weighted spec-
tral partitioning algorithm. As for the SDDA partitions,

the convergence rate of the DSTAP algorithm was low.
This demonstrates the importance of minimizing the
interflow between the subnetworks.

Conclusions

This paper evaluates the performance of different parti-
tioning algorithms used for spatial parallelization of the
static TAP. The partitioning objective is to minimize the
computation time needed to solve the static traffic assign-
ment using a decomposition approach. The computation
time per DSTAP iteration could be reduced by minimiz-
ing the number of subnetwork boundary nodes and the
time required to solve the TAP for the subnetworks in
parallel. The convergence rate of DSTAP depends on the
interflow between subnetworks.

Two different methods for partitioning are tested. The
first approach is an agglomerative clustering algorithm
developed by Johnson et al. (9) to minimize the number
of boundary nodes between the subnetworks and to cre-
ate partitions that are balanced in size. The second
approach developed is based on flow weighted spectral
partitioning. The results indicate that the agglomerative
clustering algorithm generates subnetworks that have a
low number of boundary nodes. However, the subnet-
works generated from this method may be heavily

Figure 4. Iterative change of the maximum excess cost of the DSTAP algorithm when used with flow weighted spectral partitions and
SDDA partitions of the hypothetical double Sioux Falls network.

124 Transportation Research Record 2672(48)



imbalanced as shown for the Austin and Chicago sketch
networks. This leads to higher computation time for sol-
ving the DSTAP subproblems in parallel. The flow
weighted spectral partitioning method generates flow
balanced subnetworks which reduce the per iteration
computation time. In addition, the interflow between
subnetworks is minimized by the spectral partitioning
algorithm, which leads to a faster convergence rate of
the DSTAP algorithm.

Future work will further assess the trade-offs between
minimizing the per iteration computation time and maxi-
mizing the convergence rate of DSTAP. Partitioning
methods that aim to simultaneously minimize boundary
nodes and interflow will be explored. Alternative approx-
imations will be sought that reduce the number of artifi-
cial links generated by DSTAP.

Acknowledgments

The authors would like to thank Dr. Klaus Nökel, PTV
Group, for his suggestions and comments. This material is
based on work supported by the National Science Foundation

under Grant No. 1254921. Partial support was provided by the
Data-Supported Transportation Operations and Planning cen-
ter (D-STOP) and the Cooperative Mobility for Competitive
Megaregions center (CM2). The authors are grateful for this
support.

Author Contributions

The authors confirm contribution to the paper as follows: study
conception and design: Cesar N. Yahia, Venktesh Pandey,
Stephen D. Boyles; analysis and interpretation of results: Cesar
N. Yahia, Venktesh Pandey, Stephen D. Boyles; draft manu-
script preparation: Cesar N. Yahia, Venktesh Pandey, Stephen
D. Boyles. All authors reviewed the results and approved the
final version of the manuscript.

References

1. Beckmann, M., C. B. McGuire, and C. B. Winsten. Studies

in the Economics of Transportation. Yale University Press,

New Haven, CT, 1956.
2. Bar-Gera, H. Origin-Based Algorithm for the Traffic

Assignment Problem. Transportation Science, Vol. 36, No.

4, 2002, pp. 398–417.
3. Dial, R. B. A Path-Based User-Equilibrium Traffic Assign-

ment Algorithm that Obviates Path Storage and Enumera-

tion. Transportation Research Part B: Methodological, Vol.

40, No. 10, 2006, pp. 917–936.
4. Jafari, E., V. Pandey, and S. D. Boyles. A Decomposition

Approach to the Static Traffic Assignment Problem.

Transportation Research Part B: Methodological, Vol. 105,

2017, pp. 270–296.
5. Colson, B., P. Marcotte, and G. Savard. An Overview of

Bilevel Optimization. Annals of Operations Research, Vol.

153, No. 1, 2007, pp. 235–256.

6. Bar-Gera, H. Traffic Assignment by Paired Alternative

Segments. Transportation Research Part B: Methodologi-

cal, Vol. 44, No. 8–9, 2010, pp. 1022–1046.
7. Abdelghany, K., H. Hashemi, and A. Alnawaiseh. Parallel

All-Pairs Shortest Path Algorithm: Network Decomposi-

tion Approach. Transportation Research Record:

Journal of the Transportation Research Board, 2016. 2567:

95–104.
8. Boyles, S. D. Bush-Based Sensitivity Analysis for Approxi-

mating Subnetwork Diversion. Transportation Research

Part B: Methodological, Vol. 46, No. 1, 2012, pp. 139–155.
9. Johnson, P., D. Nguyen, and M. Ng. Large-Scale Network

Partitioning for Decentralized Traffic Management and

Other Transportation Applications. Journal of Intelligent

Transportation Systems, Vol. 20, No. 5, 2016, p. 461.
10. Frank, M., and P. Wolfe. An Algorithm for Quadratic

Programming. Naval Research Logistics, Vol. 3, 1956, pp.

95–110.

11. Jayakrishnan, R., W. Tsai, J. Prasker, and S. Rajadhyak-

sha. A Faster Path-Based Algorithm for Traffic Assign-

ment. Transportation Research Record: Journal of the

Transportation Research Board, 1994. 1443: 75–83.

12. Nie, Y. M. A Class of Bush-Based Algorithms for the Traf-

fic Assignment Problem. Transportation Research Part B:

Methodological, Vol. 44, No. 1, 2010, pp. 73–89.
13. Gentile, G. Local User Cost Equilibrium: A Bush-Based

Algorithm for Traffic Assignment. Transportmetrica A:

Transport Science, Vol. 10, No. 1, 2014, pp. 1–40.
14. Zheng, H., and S. Peeta. Cost Scaling Based Successive

Approximation Algorithm for the Traffic Assignment

Problem. Transportation Research Part B: Methodological,

Vol. 68, 2014, pp. 17–30.
15. Josefsson, M., and M. Patriksson. Sensitivity Analysis of

Separable Traffic Equilibrium Equilibria with Application

to Bilevel Optimization in Network Design. Transportation

Research Part B: Methodological, Vol. 41, No. 1, 2007, pp.

4–31.
16. Chen, R., and R. R. Meyer. Parallel Optimization for Traf-

fic Assignment. Mathematical Programming, Vol. 42, No.

1, 1988, pp. 327–345.
17. Lotito, P. A. Issues in the Implementation of the DSD

Algorithm for the Traffic Assignment Problem. European

Journal of Operational Research, Vol. 175, No. 3, 2006, pp.

1577–1587.
18. Etemadnia, H., K. Abdelghany, and A. Hassan. A Net-

work Partitioning Methodology for Distributed Traffic

Management Applications. Transportmetrica A: Transport

Science, Vol. 10, No. 6, 2014, pp. 518–532.
19. Garg, N., V. V. Vazirani, and M. Yannakakis. Approxi-

mate Max-Flow Min-(Multi) Cut Theorems and Their

Applications. SIAM Journal on Computing, Vol. 25, No. 2,

1996, pp. 235–251.
20. Saeedmanesh, M., and N. Geroliminis. Clustering of Het-

erogeneous Networks with Directional Flows Based on

‘‘Snake’’ Similarities. Transportation Research Part B:

Methodological, Vol. 91, 2016, pp. 250–269.
21. Karypis, G., and V. Kumar. A Fast and High Quality Mul-

tilevel Scheme for Partitioning Irregular Graphs. SIAM

Yahia et al 125



Journal on Scientific Computing, Vol. 20, No. 1, 1998, pp.
359–392.

22. Spielman, D. A. Spectral Graph Theory and Its Applica-
tions. Proc., 48th Annual IEEE Symposium on Foundations

of Computer Science, IEEE, Providence, RI, 2007, pp. 29–
38.

23. Spielman, D. A., and S. Teng. Spectral Partitioning Works:
Planar Graphs and Finite Element Meshes. Linear Algebra
and its Applications, Vol. 421, No. 2–3, 2007, pp. 96–105.

24. Newman, M. E. J. Spectral Methods for Community
Detection and Graph Partitioning. Physical Review E, Vol.
88, No. 4, 2013, p. 042822.

25. Von Luxburg, U. A Tutorial on Spectral Clustering. Statis-
tics and Computing, Vol. 17, No. 4, 2007, pp. 395–416.

26. Shi, J., and J. Malik. Normalized Cuts and Image Segmen-
tation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 22, No. 8, 2000, pp. 888–905.
27. Bell, M. G. H., F. Kurauchi, S. Perera, and W. Wong.

Investigating Transport Network Vulnerability by Capac-
ity Weighted Spectral Analysis. Transportation Research

Part B: Methodological, Vol. 99, 2017, pp. 251–266.

28. Martinez, S., G. Chatterji, D. Sun, and A. M. Bayen. A

Weighted-Graph Approach for Dynamic Airspace Config-

uration. Proc., AIAA Conference on Guidance, Navigation,

and Control (GNC). American Institute of Aeronautics

and Astronautics, Reston, VA, 2007.
29. Ma, Y., Y. Chiu, and X. Yang. Urban Traffic Signal Con-

trol Network Automatic Partitioning using Laplacian

Eigenvectors. Proc., 12th International IEEE Conference on

Intelligent Transportation Systems, ITSC’09. IEEE, Maui,

HI, 2009, pp. 1–6.
30. Jafari, E., and S. D. Boyles. Improved Bush-Based Meth-

ods for Network Contraction. Transportation Research

Part B: Methodological, Vol. 83, 2016, pp. 298–313.
31. Stabler, B. Transportation Networks for Research, 2018.

http://www.bgu.ac.il/bargera/tntp. Accessed August 1,

2017.

The Standing Committee on Transportation Network Modeling

(ADB30) peer-reviewed this paper (18-06570).

126 Transportation Research Record 2672(48)


